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SUMMARY

Answering queries in a relational database often requires that the natural join of two or
more relations be computed. However, not all joins are semantically meaningful. This pa
per gives an efficient algorithm to determine whether the join of several relations is semanti
cally meaningful Oossless} and an efficient algorithm to determine whether a set of relations
has a subset with a lossy join.. These algorithms assume that all data dependencies are func
tional. Similar techniques also apply to the case where data dependencies are multivalued.

1. Introduction

The relational model of data, originating with the work
of Codd [5, 6], has recently attracted a considerable
amount of interest. In this model, data entries are ar
ranged into one or more multi-column tables called rela
tions. The columns of the tables are labeled by attributes.
The values of the entries in a column are chosen from a
set called the domain for the corresponding attribute. As
an example, consider a database with five tables having
the following formats:

NA = (NAME, ADDRESS)
NP = (NAME, PHONE)
PO = (PHONE, DISTRICT)
AZ = (ADDRESS, ZIP)
ZD = (ZIP, DISTRICT)

All attributes above should have a meaning that is self
explanatory, except possibly for ~~DISTRICT," which is
intended to be the territory of the phone company serving
the subscriber.

The nature of the data itself may impose restrictions on
the values of certain entries. For example, in our data
base we assume that at anyone time each person has only
one address, and, for convenience, only one phone. This
type of ~~data integrity" can be captured by functional
dependencies between sets of attributes.
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Informally we say that a set of attributes X .functionally
determines a set of attributes Y, written X ---. Y, if for any
assignment of values to the attributes of X, there can be
at anyone time at most one value for each of the attri
butes of Y. For example, in our database NAME ---. AD
DRESS, PHONE. The complete list of functional depen
dencies we shall assume for our running example is:

NAME ---. ADDRESS
NAME ---. PHONE
ADDRESS ---. ZIP
PHONE ---. DISTRICT
ZIP ---. DISTRICT

Of these, only the last is controversial. We assume, for
the sake of an interesting example later on" that each zip
code is wholly contained within one district.

To answer queries put to the database, we may have to
consult and put together pieces of information from
several tables. For example, suppose that in our running
example we wish to answer the query:

~~What are the zip codes of the people with phone
number 609-452-4646?"

Since we do not have a single table that has both ZIP and
PHONE as attributes, to answer the query we must select
and piece together information from several tables.
Different answers may result depending on how we do
this. For example" if we choose to combine the informa
tion from the tables PO and ZD, then we incorrectly asso
ciate every zip code in New Jersey (the district including



area code 609) with the phone number 609-452-4646. On
the other hand, if we combine the information from the
tables NA, NP and AZ, we obtain the correct answer~ the
phone number is associated only with the correct zip
codes, even though there may be different people at
different addresses associated with one phone number.

Putting together pieces of information from several
tables can be viewed as combining (or joining) the tables
to form a bigger table. As we have seen, to answer a
query involving several attributes, it is not enough to
compose tables that, between them, have all the attributes
in the query. The goal of this paper is to characterize
when such compositions of tables are correct.

The issue of correctness of joins is not only of intellec
tual interest, but also of practical significance in the
design and manipulation of relational databases. Design
ing a relational database requires knowing what attributes
to group together into single tables. Various such group
ings are often possible in a given situation. In existing
systems (e.g., INGRES [14]), the user selects and defines
the table formats. There are also proposals for construct
ing table formats automatically, given only the dependen
cies that pertain to the situation [3,9,12]. In either case,
it is important to select a Hgood" set of table formats,
and certainly one property to look for in such a set is the
~~correctness" of its joins. Once a format has been select
ed, users formulate queries against the database. Here
again, either the user selects the joins to be made, or
these are selected by the system~ in any case, it is impor
tant to make only ~~correct" joins.

Whether a set of table formats admits only ~ ~correct"

joins depends on the dependencies that are given. We
study here two types of dependencies. Functional depen
dencies have been known since the emergence of the re
lational model [5,6] and their properties have been stu
died exhaustively [1-4]' Recently, another type of depen
dency called a multivalued dependency, has been introduced
[4,8,10,15]. For both types of dependencies our results
indicate a nontrivial connection between the given depen
dency structure and correctness of joins.

2. The Formal Model

In order to talk about correctness of operations on a da
tabase, we must have a model of the ~~universe" that the
database is supposed to represent. The model we shall
use is that of [1,3,4]. The user view of the world is a
finite set of tuples, with one component for each attribute
of the database. Formally, a universe is a finite set of at
tributes, each with an associated donlain of values, togeth
er with a set of constraints. For the time being we assume
the constraints are functional dependencies. In Section 5
we shall deal with multivalued dependencies.

An element of the universe is a map I-t from the set of
attributes to the corresponding domains. We shall often
assume an ordering AI, A 2, ... , Ak for the attributes
and shall represent an element I-t in the traditional way, as
a k-tuple I-t (A 1)' I-t (A 2)' ... , I-t (A k ). An instance of the
universe is a finite set of elements that satisfies all the
given constraints.

A .functional dependency is a statement X --+ Y, where X
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and Yare sets of attributes. An instance f satisfies this
functional dependency if and only if for all I-t and 1/ in f,
if I-t (A) = v (A) for a11 A in X, then I-t ( B) = v ( B) for all
B in Y. That is, if two rows of f agree in the columns for
X, then they agree in the columns for Y. Note that if f
satisfies a given set of dependencies, then it also satisfies
additional dependencies, e.g., if f satisfies A -+ Band
B --+ C, it also satisfies A -+ C'. Inference rules for func
tional dependencies have been studied, and several com
plete sets of rules have been presented [1,4,10]. We use
here a formalism that is equivalent to these complete sets
of rules.

Assume that a set of functional dependencies is given.
For a set of attributes X, we define CL (X), the closure of
X, as follows:

(1) X ~ CL (X)
(2) If Y ~ CL (X), and Y -+ Z is a given functional

dependency, then Z ~ CL (X).
(3) No attribute is in CL (X) unless it so follows from

(1) and (2). . .
We write X --+ Y if Y ~ CL(X). Essentially, X -+ Y
means that the functional dependency X -+ Y is in or can
be derived from the given set of dependencies. Two sets
of dependencies are equivalent if, for all X, CL (X) is the
same under either set of dependencies. It is known that
we preserve equivalence if we replace X -+ Y by
X--+A 1, ... ,X--+A k , where Y is the set {A 1, ... ,At.:}.
We shall therefore assume henceforth that all functional
dependencies have a single attribute on the right.

A database schenla is a finite set of table formats, for
mally called relation schemes, where each relation scheme
is a set of attributes. A database is a collection of rela
tions, one for each relation scheme, where a relation is a
finite set of tuples, that is, maps from the attributes in the
relation scheme to their domains. (Each relation can be
viewed as a set of rows in a table whose format is
specified by the corresponding relation scheme). A data
base is a representation of an instance of the universe.
To define this representation, we need two operations,
projection and (natural) join.

Given an instance f on the set of attributes X, and a
subset Y ~ X, we define 1T y(f), the projection of f onto
Y, to be the set of maps JL from Y to the corresponding
domains, such that for some v in f, v agrees with JL on Y.
We can think of the projection of f onto Yas the opera
tion that takes the table represented by f, deletes all
columns except those labeled by attributes in Y, and then
identifies common rows.

The (natural) join is an '~inverse" to the projection
operator defined as follows. Let R 1, R2, ... , Rm be re
lation schemes, and let their current values be the rela
tions rl, r2, ... , r m . Then the join

~ r, ={ I-t II-t is a map on the set of attributes UR,
,=1 ,=1

such that for all 1~ i ~ m there is a map v, in R,
that agrees with JL on R,}.

For example, if R 1 = AB and R 2 = BC', where
1'1 = {ab, a'b /} and 1'2 = {be, be', b'e"}, then

1'1 IXI r2 = {abc, abe', a'b'c"}.

As another example, if all R, 's are disjoint, then the join



Projecting PDZ onto PD and PZ, we obtain

Taking the join of PD and DZ, we obtain

IS Just the Cartesian product of the r's. Note that the
join operator is associative and commutative, and that for

In

each i, 7T R( P<I rj) = r.
1 j=1 .

A database that represents a given instance 1 of the
universe is simply the set of projections of lonto the rela
tion schemes. Rissanen [13] shows that if we want any
one-to-one correspondence to hold between instances and
projections, then the join is the only operation that can be
used to recover an instance from the projections.

We say that a set {R 1, R2, ... , Rm } of relation
schemes has the lossless join property (or, briefly, that
R I, R2, ... , Rm have a lossless join) if, for all instances
1 that satisfy the given dependencies:

where R = URi. That is to say, whatever instance of
1=1

the universe pertains at the moment, provided only that it
satisfies the constraints associated with the universe, we
can recover its projection onto the union of the attributes
of the R,'s by using the join operator. If
{R 1, R 2, •.• , Rm } does not have this property, we say
that it has a lossy join.

The term "lossless" refers to the fact that the informa
tion contained in 1 is not lost if we replace 1 by its projec
tions onto the R,'s, or if 1 has already been replaced by
some of its projections, and one of those is 7T R (I), then
no information is lost if this projection is replaced by the
projections on the R,'s.

Note that if (1) does not hold for all I, it is at least true
that the left side is contained in the right side. When the
containment is strict, however, some information about 1
is lost. For example, if we had in our running database a
relation scheme PDZ = (PHONE, DISTRICT, ZIP), then
we would have in the corresponding relation for each
phone number the associated zip code. Suppose we have
replaced the relation scheme PDZ by PD and DZ. Then
when we attempt to recreate PDZ by joining PD and DZ,
we can associate with a given phone number, via the join,
erroneous zip codes, so we have a lossy join. For in
stance, suppose PDZ has the value

This section shows that there is a quartic time algo
rithm to test whether a set of relation schemes with a
given set of functional dependencies has a lossless join.
Let us fix our attention on a particular set of relation
schemes R 1, R2, , Rm , whose union R is the set of
attributes A 1,A 2, ,An' Let An+I , ••• ,Ap be the attri-
butes not in R. By fixing on this attribute ordering, we
can represent elements (mappings) as p -tuples. From the
definition of join it follows that for any instance 1

that phone number 201-582-4862 is only associated with
zip code 07974 and that 609-452-4646 is only associated
with 08540.

3. An Algorithm to Test for Losslessness

m

P<I 7TR(/) ={ala2 ... ani there exist p-tuples
1=1 I

WI, W2, ... , Wm in 7T R (I) such that Wi has
~j in position .i if the attribute Aj is in Ri

and an arbitrary value in position j other
wise}.

Our algorithm to test for losslessness begins by writing
down the table of WI'S that produce an n -tuple of the
form ala2 ... an in the join. We use a new symbol bu if
the jth position of Wi is arbitrary. We then use the given
functional dependencies to infer equalities among the ai's
and the bu's. That is, if two w/s have the same symbols
in the set of columns X, and X --+ A is a dependency,
then the symbols in the column for A in these rows may
be equated.

If we infer that some Wi must begin with a 1a2 ... an'
then we have shown that an arbitrary element

m

al a2 ... an of P<I 7T R (I) is in 7T R (I), given that 1 satisfies
i=1 I

m

the dependencies, so P<I 7T R (I) k 7T R (I). Since inclusion
i=1 1

in the other direction is obvious, we have proved (1) for
an arbitrary 1 satisfying the dependencies, and we con
clude that the set {R I, R2, ... , Rm } has the lossless join
property. In the opposite case, where we cannot infer
that some Wi is al a2 ... an, we have a counterexample to
the lossless join property if we let 1 be the set of Wi'S that
result after all equality inferences are made, treating the
a,'s and bu's as distinct constants. That is, al a2 ... an is

m

not in 7T R (I) but is in P<l7T R (I). Thus we have:
i=1 I

Theorem I. There is an algorithm of time complexity
o (n4

) to test whether a set of relation schemes has the
lossless join property, where n is the space needed to
write down the relation schemes, attributes, and function
al dependencies. 0

Example 1. Let the set of attributes be
{A, B, C, D, E, F, G} and let the set of relation
schemes be

(1)

D Z
NJ 07974
NJ 08540

Z

07974
08540

Z

m

7TR(/) = P<I 7TR(/)
i=I 1

P D

201-582-4862 NJ
609-452-4646 Nj

P D

m

P D
201-582-4862 NJ
609-452-4646 NJ

As we see, this larger relation obscures the information

201-582-4862 NJ
201-582-4862 NJ
609-452-4646 NJ
609-452-4646 NJ

07974
08540
07974
08540

R1 = (ABDE)
R2 = (ACDF)
R3 = (BCEF)

with the functional dependencies A --+ Band F --+ E. We
form the following table.
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A B (' [) I:; F (;
}1'I = al a2 bu a4 as bIb b17

»'2 = a1 bn a3 04 b25 06 bn
~fJ = b31 a2 a3 b34 as ab b]7

Applying A --. B we infer that bn = a2. That is, since H',

and W2 agree on A, they must agree on B. Similarly,
F --. E allows us to infer that b2S = a5, so
W2 = al a2 ... a6b27, which has only a's in the attributes
of R 1U R2 U R3. Hence the set {R 1, R2 , R3} has a loss
less join. 0

Exarnple 2. To see how inferences of equalities among b's
can be important, consider

R 1 = (BEF)
R 2 = (ABE)
R3 = (AD)
R 4 = (CEF)

with dependencies

A
B
C

C
C~

D

E
D
D

D
A
B

Theoren12. Let R be a set of relation schenles. Then
(a) If R has a lossless join, then R can be transfornled
into a single relation scheme by the operations

( 1) 1f R n S ;r. 0, adj0 in C'L (R n S) toR and S.

(2) If R ~ S, delete R,
(b) If R can be transformed to a single relation schenle
by the operations

(1) If R n s ~ 0, adjoin ('L (R n s) n (R U S)
to Rand S.

(2) If R ~ S, delete R. then R has a lossless join.
Proo.f. (a) follows by examination of the algorithnl for
Theorem 1. (b) is fronl Lemmas 1 and 2. Details are
omitted. 0

Example 2 shows that (b) is not sufficient for lossless
ness.
Corollary 1. [13] R!XI S is a lossless if and only if

R n S ~ R or R n S ~ S. 0

Example 3. In our running example, the relation schemes
PO = (PHONE, DISTRICT) and ZD = (ZIP, DIS
TRICT) have a lossy join, since PD n ZD = {DIS
TRICT} and neither PHONE nor ZIP functionally depend
on DISTRICT.

We begin with the following table.

A B C D E F
WI b11 a2 b l3 b 14 a5 a6

W2 al a2 b 23 b 24 a5 b26

W3 al b32 b33 a4 b 35 b36

W4 b 41 b 42 a3 b44 as a6

Since A --. (~we may replace b33 by bu. Since B --. C we
may replace b23 by b l3 . Since C --. D we may replace a4

and b 24 by b14 . Since E --. D we may replace b44 by a 4,

giving:

A B C D E F
WI bll a2 bl3 a4 as a6

W2 al a2 bl3 a4 as b26

W3 al b32 b l3 a4 b3S b 36

W4 b 41 b 42 a3 a4 as a6

Since D --., A and D --., B, b41 becomes al and b42 be
comes a2, so W4 = ala2 ... a6, and the join of R 1, R 2,

R 3, and R4 is lossless. 0

Lemma 1. 'Let R be a set of relation schemes. Suppose
that' for some Rand S in R, there is an attribute A in

S- R such that R n S·~ A. Th'en R has a lossless join
if and only if the set R - {R} U {R U {A}} has a loss
less join.
Proof. For any instance I, the two sets of projections
have the same ultimate table after all inferences are made
according to the algorithm just described. 0

For example, we may adjoin D to R 3 in Example 2.
Lemma 2. Let R be a set of relation schemes, let Rand S
be in R, with R ~ S. Then the R has a lossless join if
and only if R - {R} ~as a lossless join.
Proof. It is easy to show that if in the above algorithm
the row for R becomes ala2 ... an, so does the row for
S. 0
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4. Databases Without Lossy Joins

We now turn to the problem of whether a collection R
of relation schemes has a subset with a lossy join. We
note that if two relation schemes are disjoint, then their
join is surely lossy (and usually there is no reason to join
disjoint relations). Therefore we define a subset
{R 1, R2, ... , Rm } of R to be nontrivial if it has no prop
er partition into two sets such that the unions over the
two sets are disjoint. We also say informally that
R 1, R2, ... , Rm have a nontrivial join.

Surely, one condition for R to have no nontrivial lossy
joins is that all nondisjoint pairs of relation schemes satis
fy the condition of Corollary 1. Let us therefore form a
directed graph G (R), whose nodes are the relation
schemes of R, having an arc from R to S if and only if

R n S ~ S. We use the notation R ~ S to indicate
an arc from R to S. Note that there is a distinction

between ~ used for arcs and -+ or ~ used for func

tional dependencies. However, if R ~ S, then R ~ S.
Exalnple 4. G (R) for our example database of Section 1
is shown in Fig. 1.

Fig. 1. G (R) .

Since whenever a pair of nondisjoint relation schemes
does not satisfy the condition of Corollary 1 it has a lossy
join, we assume in the rest of this section that each pair



of nondisjoint relation schemes in R does satisfy the con
dition. In the following lemmas we aim to prove a neces
sary and sufficient condition for R satisfying this condi
tion to have no nontrivial lossy join.

* * *
Letnrna 3. Suppose X + Yl , X + Y2, ... , X + Yn .

Then there is an instance I = {w, x}, where wand x
agree on the attributes of X and for all 1 ~ i ~ n,
disagree on some attribute in YI •

Proof: Let wand x agree on all attributes in CL (X) and
disagree on all other attributes. Then as
Y; - CL (X) ~ 0, we see that I satisfies the conditions of
the lemma. To see that I does not violate any functional
dependency Z -+ A, note that if wand x agree on all at
tributes of Z, then Z ~ CL (X). Therefore,
A ~ C'L (X), so wand x agree on A. 0

A strongly connected region (SCR) of a graph is a sub
graph having a directed path from any node to any other
node. The following lemma gives an elementary property
of strongly connected regions in G (R).
Lemma 4. In any SCR in G(R), say {R I , R2, •.. , R/.:},

R i ~ Rj for all i and j.

Proo..f There is a directed path from Ri to Rj , say
SI, S2, ... , Sm, where R; = 51 and Rj = Sm. By

definition of G (R), 5; n 5;+1 ~ SI+I for all i, 1 ~ i < m.
Therefore:

We have seen in Corollary 1 the condition that makes
the join of a pair of relation schemes be lossy. We now
give another condition which makes the join of more than
two relation schemes be lossy. These two conditions will
be seen to characterize those sets of relations that contain
a nontrivial lossy join. The forbidden subgraph is shown
in Fig. 2. It consists of an SCR T with two other nodes R
and S that are not connected by an arc, but that each
have arcs into the SCR and no arcs out of the SCR.

Fig: 2: Forbidden subgraph for lossless joins.

Lemma 5. Let R satisfy the condition of Corollary 1 for
all pairs of relations with nonempty intersections. Sup
pose that there is in G (R) an SCR {TI , T2, . . ., Tn} and
nodes Rand S such that R ~ T I , S ~ Tn and G (R)
has no arc S ~ R or R ~ S and no arc from any Ti

to R or S. Then R ~5P<1 Tl~ ~ Tn is lossy.
Proo..f Let X = CL(T1 U U T,). If R ~ X, then
by Lemma 4,

R n T1~ T I ~ T1 U ... U Tn ~ X ~ R,

so there would be an arc T I ~ R. A similar observa
tion applies to S. Thus, neither R nor S is a subset of X.
By our assumption that the condition of Corollary 1 is
satisfied for R, the fact that there is no arc between Rand
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S implies R n S = 0. Then by Lemma 3 applied to R,
S, and T1 U ... U Tn, there is an instance I = {w, xl,
where wand x agree on TI U ... U T,l' but disagree
on some attribute of R and also on some distinct attribute
of S. Thus 11' T D<l· . D<I T (I) is a singleton, and

I n

1TR(I)P<1 1T s(I)P<11TT
1
u", UT (I)

n

is seen to have four members, while 1T R usu T U ... U T (I)
1 n

has only two. Thus this join is lossy. Note the fact that
Rand S are disjoint, which follows from the condition of
Corollary 1, is essen tial here.

Theorem 3. Let R be a set of relations. Then R has a
lossy join if and only if either

*
(1) for some Rand S in R, R R n S + R, and

*
R n S + S, or

(2) there exist R, S, and T1 , ••• , Tn in R forming
the forbidden subgraph of Fig. 2. That is, there
are no arcs between Rand S, there are no arcs
from any TI to R or S, and {T I , . .. , Tn} is
strongly connected.

Proof: (If). In case (1), R P<1S is lossy by Corollary 1. In
case (2) R P<1S~ T1P<1 ... P<1 Tn is lossy by Lemma 5.

(Only if). Suppose (1) and (2) are both false, yet R
has a nontrivial lossy join. We may take this lossy join to
be all of R, since if the join that is lossy happens to be a
proper subset of R, we may replace R by this subset in
the statement of the theorem. The fact that no examples
of (1) or (2) exist in R implies that no example exists in
the subset.

We claim that the relations in any nontrivial join have a
graph that is pseudo-connected, meaning that the graph,
with all arcs replaced by undirected edges, form a con
nected undirected graph. The proof is by induction on
the number of relations joined.
Basis. If two relations are joined, the result follows from
condition (1).
Induction. Suppose R IlXl ... P<1 Rn is joined with
SIP<1 ... I><JSm . Then

(R 1 U ... URn) n (SI U ... U Sm) ~ 0

so there is an arc between some R; and some Si'
It suffices therefore to show that, given (1) and (2),

any set of relations with a pseudo-connected graph has a
lossless join. We first prove:
Lemma 6. In any pseudo-connected graph for which no
instance of (2) can be found, for any nodes Rand S there
exists a node T with a directed path from T to R and a
directed path from T to S. (T may be R or S.)
Proo.f. The proof is by induction on the length of the
shortest pseudo-path between Rand S.
Basis. If the pseudo-path has length one, it is an arc and
thus the result is immediate.
Induction. Suppose that the result is true for pseudo
paths shorter than I~ and let R, T1, ... , T;-2, S be a
pseudo-path of length i. By the inductive hypothesis
there is some node T' with directed paths to Rand T;-2.
If there is an arc Ti - 2 ~ S, then we are done. There
fore assume S ~ Ti - 2•

Let the directed path from T' to T;-2 be



VI ~ ... ~ Vr , where T' = VI and Ti- 2 = Vr . If
for some i there is an arc from V j to S, we may let
T = T', and we are done. Otherwise, we may prove by
backwards induction on j that for some k i ~ j, there is
an edge S ~ Vk . and {Vk ., .•• , Vi} is an SCR.

J .I .

Basis. If j = r, the result becomes immediate when we
let kr = r.

Induction. Let there be an edge S ~ Vkj+ l
and let

{Vk.i+I' ... , Vi+d be an SCR. The existence of

k.i+I ~ j+1 follows from the inductive hypothesis. There
is an edge l.!i ~ l.!i+I, so we may apply Lemma 5 to
SCR {Vkj+l' . . ., Vi+I} and nodes l.!i and S. As R is as-

sumed to have no examples of (2), there must be an edge
either from

i) Vrn ~ S for some m, j < m ~ k.i+I,

ii) Vrn ~ l.!i for some m, j < m ~ k.i+l,

iii) S ~ l.!i' or
iv) Vj ~ S.
Cases (i) and (iv) cannot occur, because we have as

sumed no arcs from any V j to S. In case (ii) we have the
inductive hypothesis, with k.i = k.i+I. In case (iii) we have
the inductive hypothesis with k.i = j.

To complete the proof of Lemma 6, we have only to
observe that in the case where there are no arcs
Vj ~ S, letting j = 1 shows that there is a directed
path from S to T'to R. Hence T may be taken to be S.
Lemma 7. In any pseudo-connected graph for which no
instance of (2) can be found, there is a node from which
there is a directed path to each node.
Proof If not, let R be a node that reaches a maximum
number of nodes, and let S be a node not reached by a
directed path from R. Then by Lemma 6 there is a node
T with directed paths to Rand S, contradicting the maxi-
mality of R.

Returning now to the proof of the theorem, we know
by Lemma 7 that the relations of R may be ordered
SI, S2, ... , Sn, where for each i ~ 2 there is some
j < i with an arc ~i ~ Sj. Then by induction on i, the
join S1~ ... lXJ Sj is lossless.
Basis. The case i = 2 follows from Corollary 1, since
there is an arc SI ~ S2.
Induction. Assume the inductive hypothesis for ;-1.
Then there is some j < i for which an arc Si ~ SI ex-

ists. That is, ~i n Sj ~ Sj, so surely

Sj n (SI U U Sj-l) ~SI. Hence by Corollary 1 the
join (S IlXJ lXJ Sj-l)~Sj is lossless. Letting i = n proves
the theorem.

Corollary 2. There is an 0 (n 4) time algorithm to deter
mine whether a set of relation schemes has a nontrivial
lossy join, where n is the space needed to write the rela
tion schemes, attributes and dependencies.

Proo.f. By Theorem 3 and the fact [3] that X ~ Y can be
decided in linear time. 0

Corollary 3. If G (R) is a forest and the condition of
Corollary 1 is satisfied for pairs of relations with a
nonempty intersection, then all nontrivial joins are loss
less. 0

The database designs of [11] are an example where
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Corollary 3 applies.

5. Extensions to Multivalued Dependencies

Following [10,15], we say that there is a multivalued
dependency of the set of attributes Y on the disjoint set of
attributes X, written X ~ Y, if for all instances I the
following condition holds. Let Z be the set of all attri
butes not in X or Y. A tuple W in I can be viewed as the
concatenation of its projections on X, Y and Z, which we
denote W = W[X] W[ y] W[Z]. Let WI and W2 be two tu
ples with the same X-component, WI = WI [X] WI [ y] WI [Z]
and W2 = WI [X] W2[ Y] W2[Zl. Then the ~~interchanged"

tuples WI [X] WI [y] W2[Z] and WI [X] W2[ y] wdZ] are also
in I. In simple words, when W [X] is given, the Y-values
that appear within ware independent of the value of any
other attribute.

The algorithm of Section 3 generalizes to multivalued
dependencies. However, when applied to functional
dependencies, the algorithm identifies aj's, and bi) 's and
rows in the table are eliminated. When applied to mul
tivalued dependencies, rows are added to the table. The
join is lossless if and only if a word beginning a1a2 ... an
is added to the table. Unfortunately, this algorithm re
quires exponential time and space. The actual complexity
of the lossless join problem in the presence of mul
tivalued dependencies is substantially unknown.

We note that Corollary 1 holds for multivalued depen
dencies in a formulation stronger than that for functional
dependencies [10,15]. The join R lXJ S is lossless if and
only if R n S ~ Rand R n S ~ S. Further, a
multivalued dependency can have the empty set 0 as its
left side. Thus the above statement holds even if
R n S = 0 (in which case R IXI S is simply the Cartesian
product). Turning to the problem of lossless joins of sub
sets, we see that we do not have to restrict our attention
to nontrivial subsets of R. In the graph G (R), if Rand S
are connected then they are connected by two arcs, one
from R to S and one from S to R. Thus, G(R) is essen
tially an undirected graph. Clearly, if R has no subset
with a lossy join then G (R) must be complete. It turns
out that this is also a sufficient condition.
Theorem 4. Let R be a set of relation schemes. Then R
has a subset with a lossy join if and only if for some R, S
in R, R n S » R, and R n S »S. In other words,
R has a subset with a lossy join if and only if R contains a
pair with a lossy join.
Proof: Omitted in draft. 0

6. On Decompositions

The decomposition theorems for relations with func
tional dependencies discussed in [6,7] all partition a rela-

tion R into a pair R I and R2 such that R I n R2~ R 2.

By Corollary 1, R can be reconstructed from R 1 and R 2.

Our developments suggest that there may be useful
decompositions into more than two relations that are not
expressible as a cascade of decompositions into two. In
particular, we offer the following:
Theorem 5. For all n ~3 there are sets of n relations
whose join is lossless but such that no join of a proper



subset is lossless.
Proof Omitted in draft. Example 1 with attribute G om
itted shows the construction for n = 3.
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