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I. Introduction. In his celebrated paper [1], A. M. Turing investigated the

computability of sequences (functions) by mechanical procedures and showed

that the setofsequencescanbe partitioned into computable and noncomputable

sequences. One finds, however, that some computable sequences are very easy

to compute whereas other computable sequences seem to have an inherent

complexity that makes them difficult to compute. In this paper, we investigate

a scheme of classifying sequences according to how hard they are to compute.

This scheme puts a rich structure on the computable sequences and a variety

of theorems are established. Furthermore, this scheme can be generalized to

classify numbers, functions, or recognition problems according to their compu-

tational complexity.

The computational complexity of a sequence is to be measured by how fast

a multitape Turing machine can print out the terms of the sequence. This particular

abstract model of a computing device is chosen because much of the work in this

area is stimulated by the rapidly growing importance of computation through

the use of digital computers, and all digital computers in a slightly idealized form

belong to the class of multitape Turing machines. More specifically, if Tin) is a

computable, monotone increasing function of positive integers into positive

integers and if a is a (binary) sequence, then we say that a is in complexity class

ST or that a is T-computable if and only if there is a multitape Turing

machine 3~ such that 3~ computes the nth term of a. within Tin) operations.

Each set ST is recursively enumerable and so no class ST contains all computable

sequences. On the other hand, every computable a is contained in some com-

plexity class ST. Thus a hierarchy of complexity classes is assured. Furthermore,

the classes are independent of time scale or of the speed of the components from

which the machines could be built, as there is a "speed-up" theorem which

states that ST = SkT for positive numbers k.

As corollaries to the speed-up theorem, there are several limit conditions

which establish containment between two complexity classes. This is contrasted

later with the theorem which gives a limit condition for noncontainment. One

form of this result states that if (with minor restrictions)
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»*«, U(n)

then S,; properly contains ST. The intersection of two classes is again a class. The

general containment problem, however, is recursively unsolvable.

One section is devoted to an investigation as to how a change in the abstract

machine model might affect the complexity classes. Some of these are related by a

"square law," including the one-tape-multitape relationship: that is if a is

T-computable by a multitape Turing machine, then it is T2-computable by a

single tape Turing machine. It is gratifying, however, that some of the more

obvious variations do not change the classes.

The complexity of rational, algebraic, and transcendental numbers is studied in

another section. There seems to be a good agreement with our intuitive notions,

but there are several questions still to be settled.

There is a section in which generalizations to recognition problems and functions

are discussed. This section also provides the first explicit "impossibility" proof,

by describing a language whose "words" cannot be recognized in real-time

[T(n) = n] .

The final section is devoted to open questions and problem areas. It is our

conviction that numbers and functions have an intrinsic computational nature

according to which they can be classified, as shown in this paper, and that there

is a good opportunity here for further research.

For background information about Turing machines, computability and

related topics, the reader should consult [2]. "Real-time" computations (i.e.,

T(n) = n) were first defined and studied in [3]. Other ways of classifying the

complexity of a computation have been studied in [4] and [5], where the

complexity is defined in terms of the amount of tape used.

II. Time limited computations. In this section, we define our version of a

multitape Turing machine, define our complexity classes with respect to this

type of machine, and then work out some fundamental properties of these classes.

First, we give an English description of our machine (Figure 1) since one must

have a firm picture of the device in order to follow our paper. We imagine a

computing device that has a finite automaton as a control unit. Attached to this

control unit is a fixed number of tapes which are linear, unbounded at both ends,

and ruled into an infinite sequence of squares. The control unit has one reading

head assigned to each tape, and each head rests on a single square of the assigned

tape. There are a finite number of distinct symbols which can appear on the

tape squares. Each combination of symbols under the reading heads together

with the state of the control unit determines a unique machine operation. A

machine operation consists of overprinting a symbol on each tape square under

the heads, shifting the tapes independently either one square left, one square
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Figure 1. An «-tape Turing machine

right, or no squares, and then changing the state of the control unit. The machine

is then ready to perform its next operation as determined by the tapes and control

state. The machine operation is our basic unit of time. One tape is signaled out

and called the output tape. The motion of this tape is restricted to one way move-

ment, it moves either one or no squares right. What is printed on the output tape

and moved from under the head is therefore irrevocable, and is divorced from

further calculations.

As Turing defined his machine, it had one tape and if someone put k successive

ones on the tape and started the machine, it would print some f(k) ones on the

tape and stop. Our machine is expected to print successively /(l),/(2), ••• on its

output tape. Turing showed that such innovations as adding tapes or tape symbols

does not increase the set of functions that can be computed by machines. Since

the techniques for establishing such equivalences are common knowledge, we

take it as obvious that the functions computable by Turing's model are the same

as those computable by our version of a Turing machine. The reason we have

chosen this particular model is that it closely resembles the operation of a present

day computer; and being interested in how fast a machine can compute, the

extra tapes make a difference.

To clear up any misconceptions about our model, we now give a formal

definition.

Definition 1.   An n-tape Turing machine, &~, is a set of (3n + 4)-tuples,

{(q¡; Stl, Sh, — , Sin ; Sjo, Sjl, — , Sh ; m0, mx, —, m„ ; qf)},

where each component can take on a finite set of values, and such that for every

possible combination of the first n + 1 entries, there exists a unique (3zi-t-4)-tupIe

in this set. The first entry, q¡, designates the present state; the next n entries,

S(l,-",S,B, designate the present symbols scanned on tapes Tx, •■•, T„,respectively;

the next n + 1 symbols SJa, ••-, Sjn, designate the new symbols to be printed on
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tapes T0, •■», T„, respectively; the next n entries describe the tape motions (left,

right, no move) of the n + 1 tapes with the restriction m0 # left ; and the last

entry gives the new internal state. Tape T0 is called the output tape. One tuple

with S¡. = blank symbol for 1 = j = n is designated as starting symbol.

Note that we are not counting the output tape when we figure n. Thus a zero-

tape machine is a finite automaton whose outputs are written on a tape. We

assume without loss of generality that our machine starts with blank tapes.

For brevity and clarity, our proofs will usually appeal to the English description

and will technically be only sketches of proofs. Indeed, we will not even give a

formal definition of a machine operation. A formal definition of this concept

can be found in [2].

For the sake of simplicity, we shall talk about binary sequences, the general-

ization being obvious. We use the notation a = axa2 ••• .

Definition 2. Let Tin) be a computable function from integers into integers

such that Tin) ^ Tin + 1) and, for some integer k, Tin) ^ n/ k for all n. Then

we shall say that the sequence a is T-computable if and only if there exists a

multitape Turing machine, 3~, which prints the first n digits of the sequence a

on its output tape in no more than Tin) operations, n = 1,2, ••», allowing for

the possibility of printing a bounded number of digits on one square. The class

of all T-computable binary sequences shall be denoted by ST, and we shall refer

to T(n) as a time-function. Sr will be called a complexity class.

When several symbols are printed on one square, we regard them as components

of a single symbol. Since these are bounded, we are dealing with a finite set of

output symbols. As long as the output comes pouring out of the machine in a

readily understood form, we do not regard it as unnatural that the output not

be strictly binary. Furthermore, we shall see in Corollaries 2.5, 2.7, and 2.8 that

if we insist that Tin) ^ n and that only (single) binary outputs be used, then the

theory would be within an e of the theory we are adopting.

The reason for the condition Tin) ^ n/fc is that we do not wish to regard

the empty set as a complexity class. For if a is in ST and F is the machine which

prints it, there is a bound k on the number of digits per square of output tape and

T can print at most fcn0 digits in n0 operations. By assumption, Tikn0) ^ n0 or

(substituting n0 = n/ k) Tin) à n/ k . On the other hand, Tin) ^ n/ k implies

that the sequence of all zeros is in ST because we can print k zeros in each operation

and thus ST is not void.

Next we shall derive some fundamental properties of our classes.

Theorem 1. TAe set of all T-computable binary sequences, ST, is recursively

enumerable.

Proof. By methods similar to the enumeration of all Turing machines [2] one

can first enumerate all multitape Turing machines which print binary sequences.

This is just a matter of enumerating all the sets satisfying Definition 1 with the
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added requirement that Sjo is always a finite sequence of binary digits (regarded

as one symbol). Let such an enumeration be &~x, 3~2, ••• . Because T(n) is comput-

able, it is possible to systematically modify each ^"¡ to a machine &"'t with the

following properties : As long as y¡ prints its nth digit within T(n) operations

(and this can be verified by first computing T(n) and then looking at the first

T(n) operations of ^"¡), then the nth digit of &~'t will be the nth output of &~¡.

If &~¡ should ever fail to print the nth digit after T(n) operations, then ^"¡'will

print out a zero for each successive operation. Thus we can derive a new enumeration

•^"'u &~2> "•• If' &\ operates within time T(n), then ^", and ^"¡'compute the same

T-computable sequence <x¡. Otherwise, &~{ computes an ultimately constant

sequence a¡ and this can be printed, k bits at a time [where T(n) — n / fc] by a

zero tape machine. In either case, a¡ is T-computable and we conclude that

{«,} = ST.

Corollary 1.1. There does not exist a time-function T such that ST is the set

of all computable binary sequences.

Proof. Since ST is recursively enumerable, we can design a machine !T

which, in order to compute its ith output, computes the z'th bit of sequence a,

and prints out its complement. Clearly 3~ produces a sequence a different from

all <Xj in ST.

Corollary 1.2. For any time-function T, there exists a time-function U such

that ST is strictly contained in Sv. Therefore, there are infinitely long chains

STl cr STl cz •••

of distinct complexity classes.

Proof. Let &" compute a sequence a not in ST (Corollary 1.1). Let V(n) equal

the number of operations required by ^"to compute the nth digit of a. Clearly

V is computable and a e Sr. Let

t/(n) = max [Tin), V(n)] ,

then Vin) is a time-function and clearly

Orí  ^3 Oj1 *

Since a in Sv and a not in ST, we have

Corollary 1.3.   The set of all complexity classes is countable.

Proof.   The set of enumerable sets is countable.

Our next theorem asserts that linear changes in a time-function do not change

the complexity class. // r is a real number, we write [r] to represent the smallest

integer m such that m = r.
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Theorem 2. If the sequence cc is T-computable and k is a computable,

positive real number, then a is [kT~\-computable; that is,

ST = S[kTX.

Proof. We shall show that the theorem is true for k = 1/2 and it will be

true for fc = 1/ 2m by induction, and hence for all other computable k since, given

k, k ^ 1 / 2'" for some m. (Note that if k is computable, then \kT~\ is a computable

function satisfying Definition 2.)

Let ¡F be a machine which computes a in time T. If the control state, the tape

symbols read, and the tape symbols adjacent to those read are all known, then

the state and tape changes resulting from the next two operations of &~ are

determined and can therefore be computed in a single operation. If we can devise

a scheme so that this information is always available to a machine 5~', then &'

can perform in one operation what ST does in two operations. We shall next show

how, by combining pairs of tape symbols into single symbols and adding extra

memory to the control, we can make the information available.

In Figure 2(a), we show a typical tape of S" with its head on the square marked

0. In Figure 2(b), we show the two ways we store this information in &~'. Each

square of the ^"'-tape contains the information in two squares of the ^-tape.

Two of the ^"-tape symbols are stored internally in 3r' and 3~' must also remember

which piece of information is being read by 9~. In our figures, this is indicated

by an arrow pointed to the storage spot. In two operations of &~, the heads must

move to one of the five squares labeled 2, 1,0, — l,or —2. The corresponding next

position of our ^"'-tape is indicated in Figures 2(c)-(g). It is easily verified that

in each case, &"' can print or store the necessary changes. In the event that the

present symbol read by IT is stored on the right in ¡T' as in Figure 2(f), then

the analogous changes are made. Thus we know that ST' can do in one operation

what 9~ does in two and the theorem is proved.

Corollary 2.1.   If U and T are time-functions such that

«-.«> Vin)

then Svçz ST.

Proof.   Because the limit is greater than zero, Win) ^ Tin) for some k > 0,

and thus Sv = SlkVj çz sT.

Corollary 2.2.   If U and T are time-functions such that

Tin)
sup-TTT-r- <   00 ,
n-»a>     O(n)

then SV^ST.

Proof.   This is the reciprocal of Corollary 2.1.
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Figure 2. (a) Tape of ^" with head on 0. (b) Corresponding configurations of 9"'. (c) 9~' if

F moves two left, (d) 9~> if amoves to -1. (e) 9~' if ̂ ~ moves to 0. (f)^"' if amoves to 1.

(g) 9~' if 3~ moves two right

Corollary 2.3.   If U and T are time-functions such that

Tin)
0 <  hm      ) ;   <  oo ,

H-.«    Uin)

then Srj = ST .

Proof.   This follows from Corollaries 2.1 and 2.2.

Corollary 2.4.   // Tin) is a time-function, then Sn^ST . Therefore, Tin) = n

is the most severe time restriction.

Proof.   Because T is a time-function, Tin) = n/ k for some positive k by

Definition 2; hence
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mf m à 1 > O
„-»o,    n k

and S„ çz sT by Corollary 2.1.

Corollary 2.5. For any time-function T, Sr=Sv where t/(n)=max \T(n),n\.

Therefore, any complexity class may be defined by a function U(n) ^ n.

Proof.   Clearly inf (T/ Í7) > min (1,1/ k) and sup (T/ U) < 1 .

Corollary 2.6.   If T is a time-function satisfying

Tin) > n   and    inf -^ > 1 ,
„-co    n

then for any a in ST, there is a multitape Turing machined with a binary (i.e.,

two symbol) output which prints the nth digit of a in Tin) or fewer operations.

Proof. The inf condition implies that, for some rational e > 0, and integer N,

(1 - e) Tin) > n or Tin) > eTin) + n for all n > N. By the theorem, there is a

machine 9' which prints a in time \zT(ri)\. 9' can be modified to a machine

9" which behaves like 9' except that it suspends its calculation while it prints

the output one digit per square. Obviously, 9" computes within time \i.T(ri)\ + n

(which is less than Tin) for n > N). $~" can be modified to the desired machine

9~ by adding enough memory to the control of 9~" to print out the nth digit of

a on the nth operation for n ^ N.

Corollary 2.7. IfT(n)^nandoieST,thenforanys >0, there exists a binary

output multitape Turing machine 9 which prints out the nth digit of a in

[(1 + e) T(n)J or fewer operations.

Proof.   Observe that

.      [(1 + e) T(n)]
inf —--——■— — 1 + e

n

and apply Corollary 2.6.

Corollary 2.8. // T(n)^n is a time-function and oteST, then for any real

numbers r and e, r > e > 0, /Aere is a binary output multitape Turing machine

¡F which, if run at one operation per r—e seconds, prints out the nth digit of a

within rT(n) seconds. Ifcc$ ST, there are no such r and e. Thus, when considering

time-functions greater or equal to n, the slightest increase in operation speed

wipes out the distinction between binary and nonbinary output machines.

Proof.   This is a consequence of the theorem and Corollary 2.7.

Theorem 3. // Tx and T2 are time-functions, then T(n) = min [T^n), T2(n)~]

is a time-function and STí O ST2 = ST.
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Proof. T is obviously a time-function. If 9~x is a machine that computes a in

time T, and 9~2 computes a in time T2, then it is an easy matter to construct a third

device &~ incorporating both y, and 3T2 which computes a both ways simul-

taneously and prints the nth digit of a as soon as it is computed by either J~x or

9~2. Clearly this machine operates in

Tin) = min \Txin), T2(n)] .

Theorem 4. If sequences a and ß differ in at most a finite number of places,

then for any time-function T, cceST if and only if ße ST.

Proof. Let ,T print a in time T. Then by adding some finite memory to the

control unit of 3", we can obviously build a machine 3~' which computes ß in

time T.

Theorem 5. Given a time-function T, there is no decision procedure to

decide whether a sequence a is in ST.

Proof. Let 9~ be any Turing machine in the classical sense and let 3Tx be a

multitape Turing machine which prints a sequence ß not in ST. Such a 9~x exists

by Theorem 1. Let 9~2 be a multitape Turing machine which prints a zero for

each operation $~ makes before stopping. If $~ should stop after k operations,

then 3~2 prints the /cth and all subsequent output digits of &x. Let a be the

sequence printed by 9"2, Because of Theorem 4, a.eST if and only if 9~ does

not stop. Therefore, a decision procedure for oceST would solve the stopping

problem which is known to be unsolvable (see [2]).

Corollary 5.1. There is no decision procedure to determine if SV=ST or

Sv c STfor arbitrary time-functions U and T.

Proof. Similar methods to those used in the previous proof link this with

the stopping problem.

It should be pointed out that these unsolvability aspects are not peculiar to

our classification scheme but hold for any nontrivial classification satisfying

Theorem 4.

III. Other devices. The purpose of this section is to compare the speed of

our multitape Turing machine with the speed of other variants of a Turing

machine. Most important is the first result because it has an application in a

later section.

Theorem 6. If the sequence a is T-computable by multitape Turing machine,

!T, then a is T2-computable by a one-tape Turing machine 3~x .

Proof. Assume that an n-tape Turing machine, 3~, is given. We shall now

describe a one-tape Turing machine Px that simulates 9~, and show that if &"

is a T-computer, then S~x is at most a T2-computer.
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The S~ computation is simulated on S'y as follows : On the tape of & y will

be stored in n consecutive squares the n symbols read by S on its n tapes. The

symbols on the squares to the right of those symbols which are read by S~ on

its n tapes are stored in the next section to the right on the S'y tape, etc., as

indicated in Figure 3, where the corresponding position places are shown. The

1      TAPE T|

A 1      TAPE T2

I ? TAPE Tn

(a)

J-"lo

(b)

Figure 3. (a) The n tapes of S. (b) The tape of S~\

machine Tx operates as follows: Internally is stored the behavioral description

of the machine S", so that after scanning the n squares [J], [o], ■■■, [5]»-^"î

determines to what new state S~ will go, what new symbols will be printed by

it on its n tapes and in which direction each of these tapes will be shifted. First,

¡Fy prints the new symbols in the corresponding entries of the 0 block. Then it

shifts the tape to the right until the end of printed symbols is reached. (We can

print a special symbol indicating the end of printed symbols.) Now the machine

shifts the tape back, erases all those entries in each block of n squares which

correspond to tapes of S~ which are shifted to the left, and prints them in the

corresponding places in the next block. Thus all those entries whose corresponding

S~ tapes are shifted left are moved one block to the left. At the other end of the

tape, the process is reversed and returning on the tape 9y transfers all those

entries whose corresponding S~ tapes are shifted to the right one block to the

right on the S'y tape. When the machine S', reaches the rigAz most printed

symbol on its tape, it returns to the specially marked (0) block which now contains

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1965] ON THE COMPUTATIONAL COMPLEXITY OF ALGORITHMS 295

the n symbols which are read by &~ on its next operation, and #", has completed

the simulation of one operation of 9~. It can be seen that the number of operations

of Tx is proportional to s, the number of symbols printed on the tape of &"¡.

This number increases at most by 2(n + 1) squares during each operation of &.

Thus, after T(fc) operations of the machine J~, the one-tape machine S"t will

perform at most

7(*)

T,(fc) =C0+ T Cxi
i = l

operations, where C0 and C, are constants. But then

r,(fe) g C2 £  i^C [T(fc)]2 .
¡ = i

Since C is a constant, using Theorem 2, we conclude that there exists a one tape

machine printing its fcth output symbol in less than T(fc)2 tape shifts as was to

be shown.

Corollary 6.1. The best computation time improvement that can be gained

in going from n-tape machines to in + l)-tape machines is the square root of

the computation time.

Next we investigate what happens if we allow the possibility of having several

heads on each tape with some appropriate rule to prevent two heads from occupy-

ing the same square and giving conflicting instructions. We call such a device a

multihead Turing machine. Our next result states that the use of such a model

would not change the complexity classes.

Theorem 7. Let a. be computable by a multihead Turing machine 3T which

prints the nth digit in Tin) or less operations where T is a time-function; then

a is in ST .

Proof. We shall show it for a one-tape two-head machine, the other cases

following by induction. Our object is to build a multitape machine Jr' which

computes a within time 4T which will establish our result by Theorem 2. The

one tape of !T will be replaced by three tapes in 9"'. Tape a contains the left-

hand information from 9", tape b contains the right-hand information of 9~,

and tape c keeps count, two at a time, of the number of tape squares of ST which

are stored on both tapes a and b_. A check mark is always on some square of

tape a to indicate the rightmost square not stored on tape b_ and tape b has a

check to indicate the leftmost square not stored on tape a.

When all the information between the heads is on both tapes a and b. then

we have a "clean" position as shown in Figure 4(a). As &" operates, then tape
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Figure 4. (a) .^"' in clean position, (b) S' in dirty position

a performs like the left head of S~, tape A behaves like the right head, and tape

c reduces the count each time a check mark is moved. Head a must carry the

check right whenever it moves right from a checked square, since the new symbol

it prints will not be stored on tape A; and similarly head A moves its check left.

After some m operations of S~' corresponding to m operations of S~, a "dirty"

position such as Figure 4(b) is reached where there is no overlapping information.

The information (if any) between the heads of S~ must be on only one tape of S~',

say tape A as in Figure 4(b). Head A then moves to the check mark, the between

head information is copied over onto tape a, and head amoves back into position.

A clean position has been achieved and S~' is ready to resume imitating S~. The

time lost is 3/ where I is the distance between the heads. But / ^ m since head

A has moved / squares from the check mark it left. Therefore 4m is enough time

to imitate m operations of S~ and restore a clean position. Thus

as was to be shown.

This theorem suggests that our model can tolerate some large deviations

without changing the complexity classes. The same techniques can be applied

to other changes in the model. For example, consider multitape Turing ma-

chines which have a fixed number of special tape symbols such that each symbol

can appear in at most one square at any given time and such that the reading

head can be shifted in one operation to the place where the special symbol is

printed, no matter how far it is on the tape. Turing machines with such "jump

instructions^ are similarly shown to leave the classes unchanged.

Changes in the structure of the tape tend to lead to "square laws." For example,

consider the following :

Definition 3. A two-dimensional tape is an unbounded plane which is sub-

divided into squares by equidistant sets of vertical and horizontal lines as shown

in Figure 5. The reading head of the Turing machine with this two-dimensional

tape can move either one square up or down, or one square left or right on each

operation. This definition extends naturally to higher-dimensional tapes.
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Such a device is related to a multitape Turing machine by the following square

law.

Theorem 8. // a is T-computable by a Turing machine with n-dimensional

tapes, then a is T2-computable by a Turing machine with linear tapes.

Proof. We restrict ourselves to a single two-dimensional tape machine, y,

the generalization being straightforward.

We proceed to simulate Jona multitape machine if'.

At the beginning of the simulation of a 5" operation on our machine 9~', the

entire history of the two-dimensional tape is written chronologically on the right-

hand part of a linear tape as shown in Figure 5. The squares record alternately

M   I    |r|P5|r|P4ld|P3li|P2lu|PiluTPon\

u - UP SHIFT
d - DOWN SHIFT
i - LEFT SHIFT

READING HEAD f . R|GHT SH|pT

Figure 5. Contrast between two-dimensional tape and corresponding linear tape

the print and shift operations made by machine -T. To operate, the machine 3~'

inspects the history to determine what symbol is being scanned by 3~ and then

returns to the end to record the next print and shift of 3~. Since the squares have

no names, the problem is to decide which of the past symbols (if any) is supposed

to be scanned by 3~. But one can easily test to see if two squares are the same by

keeping track of the instructions between them and seeing if the up instructions

equal the down instructions and the right equal the left. This can be done in real-

time by the use of two tapes. Thus we build 9~' such that the head on the

information tape shifts right until it finds the first square equal to the "present"

square of &~ (this square of 3f contains the scanned information of 9") or until

the end is reached (in which case the "present" square is blank). The control

remembers the symbol in this square and returns left to the end printing the next

instruction and resetting en route the two tapes which test for equivalent

squares. The process repeats and the ith operation of 3~ requires at most

4(i 4- 1) operations of y. Thus if ¡F operates in time T, &~' can be speeded up

to operate in T2 as was to be shown.

As long as one can tell in real-time using ordinary tapes when the machine

with a generalized tape returns to a given tape square, then a similar technique

yields another "square law." Thus there is a wide class of devices that classify

sequences within a square of our complexity classes.
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IV. A limit theorem. In Theorem 2 and its corollaries, we established some

conditions under which two specific complexity classes are the same. The purpose

of this section is to establish a condition under which two classes are different.

First we need a preliminary definition.

Definition 4. A monotone increasing function T of integers into integers is

called real-time countable if and only if there is a multitape Turing machine S~

which, on its nth operation, prints on its output tape a one whenever T(m) = n

for some m and prints a zero otherwise. We shall refer S as a T-counter.

This definition was used by H. Yamada in [3] where he shows that such com-

mon functions as nk, k", and n ! are all real-time countable. He also shows that, if

Ty and T2 are real-time countable, then so are kTy, Ty(n) + T2(n), Ty(n) ■ T2(n),

Ty[T2(n)l and [T,(n)]T2W.

It is also true that, given a computable sequence a, there is a real-time countable

function T(n) such that a 6 ST. For observe that, for any S~ which prints a, one

can change the output of S~ to obtain a S' which prints a zero whenever S does

not print an output and prints a one whenever S does print an output ; and S'is a

real-time counter for some function T such that aeST. Thus the next theorem,

in spite of its real-time countability restriction, has considerable interest and

potential application.

Theorem 9. // U and T are real-time countable monotone increasing

functions and

lni Tt7T = ° '
„-»oo U(n)

then there is a sequence a that is in Sv but not in ST.

Summary of proof. Because T is real-time countable, a set {S'l} of binary

output multitape Turing machines can be enumerated such that each S~¡ operates

in time 2T and such that each a e ST is the a¡ printed by some S~¡. A device can

be constructed which, when supplied (on a tape) with the instructions for S~¡,

gives out the nth digit of oe¡ within C¡ [\T(ny]2 operations, where C¡ is a constant

for each i which accounts for the fact that the transitions are taken off a tape and

where the square accounts for the fact that the number of tapes available to

simulate all the S¡ is fixed and Theorem 6 must be appealed to. A device can

now be specified to run a diagonal process on the S¡ and print in time U.

Because the inf is zero, the simulation of S~¡ will eventually catch up to U

regardless of how much initial delay D¡ before the simulation begins, i.e.,

D¡ + C¡lT(Ni)]2 < (/(A/;) for some large N¡. Thus if we put out an output only

at times U(n) [and this is possible since U(n) is real-time] there is enough time to

simulate all the S"¡, one after another, and print out the complement of S'i(N¡)

at time U(N¡), Ny < N2 < ■■• < N¡ < ■■■ . Thus we are able to print out a

[/-computable sequence different from all T-computable sequences.
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Details of proof. A binary output machine &~ can be made into a 2T-computer

&~' by hooking it up to a real-time 2T-counter and extra tape. When 3~ has an

output, it is printed out and a mark is made on the extra tape. When the counter

reaches some 2T(n), a mark is erased from the extra tape. If there is no mark,

then 3" has not computed within 2T(n), and we print a zero output for that

time and each time thereafter. Thus f- is a 2T(zi)-computer and prints the same

thing as &~ whenever 9~ is a 2T(n)-computer. By modifying a list of all binary

output multitape Turing machines in this way, we get a list of machines STX which

compute all 2T(n)-computable sequences. Since any a printed by a binary output

2T(zi)-computer is printed by some &"t, we know by Corollary 2.7 that each

aeST is printed by some &~t. We can assume without loss of generality that the

tapes of TK are binary since one multivalue tape is equivalent to several parallel

operating binary tapes. Since the 3~t can be generated by an algorithm, it is

possible to design a Turing machine which, upon the ith command, prints out

the machine transitions for 3~x on a "state tape" as shown in Figure 6. The

TAPE SYMBOLS
READ

OUTPUT
PRINT

INSTRUCTIONS
SHIFT

INSTRUCTIONS
NEXT
STATE

DETAIL OF TRANSITION SECTION

STATE
NAME

~~i—r.
TRANSITION   SECTIONS

DETAIL OF STATE SECTION
,END MARKER

STARTING
STATE

SECTION
STATE   SECTIONS

STATE TAPE

Figure 6. Details of state tape

written part of the "state tape" is enclosed by end markers and is divided into

"state sections" separated by appropriate markers, the left-most section corre-

sponding to the starting state. Each state section has the code name of the state

followed by transitions sections, all separated by appropriate markers. Each

transition section has a list of tape symbols followed by the corresponding output,

print instruction, shift instructions, and next state code name. Since the tapes of

3~i are binary, only a finite number of symbols are required for this tape.

Next, we show how the "state tape" can be used to simulate 3~{ in time

Ci\_Tin)']2 where C¡ is some constant. For this we use two more tapes—a "tape

tape," and a "scratch tape." The tape tape stores the information on the tapes

of &~t in the same manner as in the proof of Theorem 6 (see Figure 6). At the

beginning, the reading head is to the left in the starting state section. Restricting

itself to this section, the machine searches for the transition section whose "tape

symbols read" correspond to the actual symbols on the tapes as listed on the tape
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tape (which is blank for this first step). Then the machine looks at the output

instruction and sends the output (if any) to the output control unit for further

processing (this would be the printed output of S~t). Then the print instructions

are carried out on the tape tape. Then the information on the tape tape is shifted as

in the proof of Theorem 6 according to the shift instructions, the "scratch tape"

being used to write down the information being shifted. Finally, the head comes

to the next state instruction and it then searches for the corresponding "state

section." Since the time for the state transition is bounded (these being only a

finite number of state transitions), we have clearly simulated the machine in the

proof of Theorem 6 within a constant factor which in turn is within a constant

factor of the square of T(n) since S~¡ is 2T(n)-computable. In other words, S~¡

is simulated within CTT'n)]2.

Next we describe the "output control" which has three tapes—an "active

tape," a "reserve tape," and the output tape for our device. The output control

receives the output from the simulator described in the previous paragraph and

from a (J-counter. At the beginning of a major cycle (to be described below) of

our device, the active tape has a mark for each one signal of the [/-counter, the

reserve tape is blank, and the output tape has as many symbols as one signals

from the [/-counter. Each time any one signal is received from the [/-counter

and there are some marks remaining on the active tape, another mark is added

to the active tape and a zero is printed on the output tape. Whenever an output

signal is received from the simulator, a mark is put on the reserve tape and a

mark (if any) removed from the active tape. If there is no mark on the active tape,

the signal is remembered by the control, and further outputs of the simulator are

ignored. When another one signal is received from the [/-counter, the comple-

ment of the remembered signal is printed on the tape and a signal is sent to the

"central control." The number of outputs and the number of one signals from the

[/-counter are now equal to the number N of marks on the reserve tape and the

active tape is blank. N is also the number of signals received from the simulator

during this major cycle and (as we shall see) the JVth output of our device was in

fact the complement of some S'i(N) and thus the device does not print out the

T-computable sequence <x¡. With the signal to the central control, the reserve

tape becomes the active tape and the active tape becomes the reserve tape ; and

a new major cycle begins.

The parts of our device are all hooked up to a "central control" (as shown

in Figure 7) which governs the major cycles. To start off, the central control

signals the enumerator to print out the state tape for S',. Then it instructs the

simulator to simulate S\. When the output control signals that it has just printed,

for some Ny, the complement of S~y(Ny) as the N,th output, the central control

stops the simulation, erases the state tape and the tape tape, and then signals the

enumerator to print out the state tape of the next machine.

It only remains to be shown that our device goes through a major cycle for
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TTnn-rfgaii 11 n 11 11

rm

ii i mi ESmj ■ : 1111 r<.

ENUMERATOR

STATE TAPE m inn ii.*■

SIMULATOR

TAPE TAPE mem
SCRATCH    axmn

TAPE

CENTRAL
CONTROL

U
COUNTER

OUTPUT
CONTROL

OUTPUT TAPE

I I M I III ACTIVE TAPE   am
RESERVE TAPE mmi

Figure 7. Device to print a {/-sequence that is not a /--sequence

each machine.?",. Suppose that after time D¡, the simulator begins to simulate &~t.

The device will complete this cycle and start simulating &~i+1 if and only if

D¡ + C¡[T(N)Y S U(N) for some large N. But D¡ + CXTin)]2 ^ L7(n) for all

n implies

1
= ™l\Uin)+C>    Vin) )     °-

a contradiction.

Next we give a corollary that enables us to construct specific complexity

classes related by proper containment.

Corollary 9.1.   If U and T are real-time countable monotone increasing

functions and

»-co U(n)

then ST is properly contained in Sv.

Proof.   This follows from the theorem and Corollary 2.3.

Now we disprove some conjectures by using our ability to construct distinct

classes.

Corollary 9.2.   There exist time-functions T such that STM¥:STin+x). Thus

a translation of a time-function may give a different complexity class.

Proof. Choose Tin) = 2"! which we know to be real-time countable by Yamada

[3]. Clearly,
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„_«, T(n + 1)

and the result follows from the theorem.

Corollary 9.3. There exist functions U and T such that ST $ Sv and

Sv $ ST.

Proof.   It is clearly possible to construct real-time functions U and T such

that:

T2 U2
inf—— = inf-—- = 0 .

U T

But then Theorem 9 applies.

We close this section with some side remarks about Definition 4. Obviously,

the concept of real-time countability easily generalizes to T(n)-countability

Yamada's constructions [3] can be used to prove the closure of these classes

under the rules of combination

C7(b) + Vin),       [/[F(n)],   and   [/(n) • F(n).

These constructions involve the operation of one counter or the other and thus

operate within time 2T which is just as good as T by Theorem 2.

V. Classification of numbers. A sequence a can be regarded as a binary

expansion of a real number a. It is interesting to inquire as to whether or not

numbers that we regard as simple in some sense fall into small complexity classes.

Although we believe that the complexity classes to which a number belongs

depend on its base, the theorems given here apply to any base.

Theorem 10.   All the rational numbers are contained in Sn.

Proof. It is both well known and obvious that any rational number, being

ultimately periodic, can be printed one digit per operation by a zero tape machine

(finite automaton).

Theorem 11.   All the algebraic numbers are contained in S„2.

Proof. Let/(x) =apxr+ ar_t xr_1 + ••• + a0 be a smallest degree polynomial

with a as a root, 0 ^ a ^ 1. Let am be a number equal to a through the mth decimal

place and zero in the other bits, where m is chosen large enough so that a is the

only root of fix) so approximated. We may assume without loss of generality

that /(ocm) ̂  0 and /(am + 2"m) > 0 .

Our machine operates as follows : The numbers <x'm (1 ;g i z% r) are stored on

separate tapes with reading heads on the r • mth place (to obtain the least significant

bit of O. The first m outputs are given from a separate memory tape. Then

b =/[am + 2~(m+1) ] is computed. If b = 0, the (m + l)st output is one and we
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store a'm+x (1 ^ i = r) [where am+1 = am + 2"(m+1)] on separate tapes, set

reading heads on the rim + l)st place, and erase the a'm. If b > 0, the output is

zero and we take <xm+1 = <xm, set the heads on the r (zn + l)st place of the

a'm( = a„,+ i) and erase scratch work. The cycle then repeats itself to calculate

the other bits.

It remains to be shown that this procedure can be done in m2 operations.

This will follow if we can show that each cycle can be completed in a number of

operations proportional to m. Now k numbers of length r • m with reading heads

on the least significant bit can be added and heads returned in 2(r ■ m + k) times

(r ■ m + k to account for carries). Multiplication by an integer h can also be

done in proportion to m since this is equivalent to adding h numbers.

The number

(«„ + 2-mY = «;„ +(i1)a'-12~»+ - + 2"im     (1 = i = r)

can thus be computed in time proportional to m since this involves adding and

constant multiplication of stored numbers and since the factors 2~' affect only

decimal places. Then b can be computed in proportion to m by a similar argument.

Finally, the (am + 2~m) or the am (depending on the output) and b can be erased

in proportion to m and thus the whole operation is in proportion to m from

which it follows that a is Tim) = m2-computable.

Theorem 12.    There exist transcendental numbers that belong to Sn.

Proof. Since n ! is real-time countable, its counter prints (in real-time) the

binary form of

whichis a Liouville number and known to be transcendental. For the base k, the

2 must be replaced by k. Since altering a finite set of digits does not alter the

complexity or the transcendental character of a, S„ contains an infinity of such

numbers which form a dense subset of the real numbers.

It would be interesting to determine whether there are any irrational algebraic

numbers which belong to S„. If this is not the case, we would have the strange

result that in this classification some transcendental numbers are simpler than

all irrational algebraic numbers.

VI. Generalizations. In this section, we consider briefly some generalizations

of our theory. To start off, we investigate the complexity of recognition problems.

Definition 6. Let R be a set of words of finite length taken over some finite

alphabet A. Let F be a multitape Turing machine with a one-way input tape

which uses the symbols in A. ST is said to recognize R if and only if, for any

input sequence a on A, the nth output digit of &~ is one if the first n digits of a
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form a word in R and is zero otherwise. If T is a time-function, Tin) ^ n, then

R is said to be T-recognizable if and only if there is a S~ which recognizes R and,

for any input sequence a, prints the nth output digit in T(n) or fewer operations.

The restriction that inputs be taken one digit at a time prevents some of the

previous results from being carried over exactly. The generalizations are never-

theless easy and some important ones are summarized in the next theorem. Had

we not permitted several output digits per square in our previous work, the

previous results might have also taken this form.

Theorem 13. 1. TAe subset of Turing machines which are T-recognizers is

recursively enumerable and therefore there are arbitrarily complex recognition

problems.

2. If R is T-recognizable and T(n) = n + E(n), E(n) — 0, then R is \J-recog-

nizable where U(n) = n + \_kE(nf], k > 0 .

3. IfT and U are time-functions such that

. e T(n) + n     .
inf   \;. .    > o,
»-»    Vin)

then ifR is U-recognizable, R is T-recognizable.

4. If R is T-recognizable by a multitape, multihead Turing machine, then

it is T2-recognizable by a single-tape, single-head Turing machine.

5. If U and T are real-time, monotone increasing functions and

»-00 Vin)

then there exist an R which is U-recognizable but is not T-recognizable.

Proof. Part 1 is proved as Theorem 1. Part 2 is proved like Theorem 2, except

that n extra operations need to be added to account for the one-at-a-time inputs.

Part 3 is proved like Corollary 2.1. Part 4 is just Theorem 6 and part 5 is Theorem 9.

One possible application of this is to language recognition problems. We have a

straightforward proof that a context free language (see [6]) can be recognized in

time Tin) = k" where fc depends only on the grammar. The proof amounts to

performing all possible constructions of length n and then checking the list for

the nth word. The next example gives a C. F. language which cannot be recognized

in real time.

Example. Let R be the set of words on the set {0, 1, s} such that a word is

in R if and only if the mirror image of the zero-one word following the last s is

the same as a zero-one word between two consecutive s's or preceding the initial

s. Thus OsllOslsOll and HOsllsOll are in R because 110 is the mirror image of

Oil whereas OllsllOlsOll is not in R. The reason that we use the mirror image

instead of the word itself is that R is now a C. F. language, although we will not

give the grammar here.
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Proof that R is not /¡-recognizable. Suppose that ¡T is a machine which rec-

ognizes R. Let 3~ have d states, m tapes, and at most k symbols per tape square.

Assume that 3~ has already performed some unspecified number of operations.

We wish to put an upper bound on the number of past input histories ¡F can

distinguish in i additional operations. The only information in storage available

to $~ in i operations is the present state and the tape information within i squares

of the head. From this information, at most d ■ fc(2i+1)m cases can be distinguished.

Now the set of zero-one words of length i— 1 has 2i_1 elements and this set has

2(2'~ ' subsets. Any one of these subsets could be the set of words of length i—1

which occured between various s symbols among the previously received inputs.

Any pair of these subsets must be distinguishable by ^ in j operations since, if

the next i inputs are an s followed by the mirror image of a word in one set but

not the other, 3~ must produce different outputs. But

2<2l~1) >dk(2i+1)m      for large/,

and thus T cannot operate as it is supposed to.

Thus we have our first impossibility result. It would seem that the study of

recognition problems offers an easier approach to impossibility results than the

study of sequences, since the researcher can control what the machine must do.

Obviously, this theory can also be generalized to the classification of functions

of integers into integers. The exact form of the theory will depend on what form

one wants the answers printed, but the techniques of the proofs apply quite

generally.

VII. Problems and open questions.

1. Improve upon the conditions of Theorem 9. The real-time condition on T

can be eliminated by a small modification in our proof, but this is not the real

issue. There is a distinct gap between Theorem 9 which states there is an a in

SV—ST and Corollary 2.1 which states that there is not; and the question is,

what can be said about Su and ST when

We are inclined to believe that this condition insures ST ^ Sv, especially if the

functions are real-time countable, but a better approach than used in Theorem 9

will probably have to be found.

2. Are there problems which need time T2 on a one-tape machine, but which

can be done in time T using several tapes? An improvement on Theorem 6 would

automatically give an improvement on Theorem 9.

3. Let QT be the set of all a such that for all U, <xeSv implies ST £ sv.

Intuitively, QT is the set of sequences that have T as a lower complexity bound.

If a e QT n ST, we are justified in saying that T is the complexity of a. For which
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time functions is QT n ST nonempty? Are there some specific properties of a

sequence or problem which insure that it belongs to some specific QT1

4. Which, if any, irrational algebraic numbers are in S„? If there are none, then

one could exhibit numerous transcendental numbers by constructing real-

time multitape Turing machines known not to be ultimately periodic. For

example,

00

a = Z 2~"2
B = l

would be transcendental.
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Added in proof. Some improvements on the results in this paper may be

found in [7]. Related results are reported in [8].

References

1. A. M. Turing, On computable numbers, with applications to the Entscheidungs problem,

Proc. London Math. Soc. (2) 42 (1937), 230-265.
2. M. Davis, Computability and unsolvability, McGraw-Hill, New York, 1958.

3. H. Yamada, Real-time computation and recursive functions not real-time computable, IRE

Trans. EC-11 (1962), 753-760.
4. J. Myhill, Linear bounded automata,^ADD Tech. Note 60-165, Rep. No. 60-22, Univ.

of Pennsylvania, June, 1960.
5. R. W. Ritchie, Classes of predictably computable functions, Trans. Amer. Math. Soc.

106 (1963), 139-173.
6. A.N.Chomsky, On certain formal properties of grammars, Information and Control 2

(1959), 137-167.
7. J. Hartmanis and R. E. Steams, Computational complexity of recursive sequences, Proc.

Fifth Annual Sympos. on Switching Theory and Logical Design, Princeton, N. J. 1964.

8. M. O. Rabin, Real-time computation, Israel J. Math. 1 (1963), 203-211.

General Electric Research Laboratory,

schenectady, new york

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


