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V viewpoints

THIS MONTH MARKS the 40th an-
niversary of the publication 
of the first article I wrote as an 
academic.a I have been invited 
to give my personal view of the 

advances that have been made in the 
subject since then, and the further ad-
vances that remain to be made. Which 
of them did I expect, and which of them 
surprised me?

Retrospective (1969–1999) 
My first job (1960–1968) was in the 
computer industry; and my first major 
project was to lead a team that imple-
mented an early compiler for ALGOL 
60. Our compiler was directly struc-
tured on the syntax of the language, so 
elegantly and so rigorously formalized 
as a context-free language. But the se-
mantics of the language was even more 
important, and that was left informal 
in the language definition. It occurred 
to me that an elegant formalization 
might consist of a collection of axioms, 
similar to those introduced by Euclid 
to formalize the science of land mea-
surement. My hope was to find axioms 
that would be strong enough to en-
able programmers to discharge their 
responsibility to write correct and ef-
ficient programs. Yet I wanted them 
to be weak enough to permit a variety 
of efficient implementation strategies, 
suited to the particular characteristics 

a Hoare, C.A.R. An axiomatic basis for comput-
er programming. Commun. ACM 12, 10 (Oct. 
1969), 576–580.

of the widely varying hardware archi-
tectures prevalent at the time. 

I expected that research into the axi-
omatic method would occupy me for my 
entire working life; and I expected that 
its results would not find widespread 
practical application in industry until 
after I reached retirement age. These ex-

pectations led me in 1968 to move from 
an industrial to an academic career. And 
when I retired in 1999, both the positive 
and the negative expectations had been 
entirely fulfilled. 

The main attraction of the axiomatic 
method was its potential provision of 
an objective criterion of the quality of 
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sprinkled more or less liberally in the 
program text, were used in development 
practice, not to prove correctness of pro-
grams, but rather to help detect and di-
agnose programming errors. They are 
evaluated at runtime during overnight 
tests, and indicate the occurrence of any 
error as close as possible to the place in 
the program where it actually occurred. 
The more expensive assertions were 
removed from customer code before 
delivery. More recently, the use of asser-
tions as contracts between one module 
of program and another has been incor-
porated in Microsoft implementations 
of standard programming languages. 
This is just one example of the use of 
formal methods in debugging, long be-
fore it becomes possible to use them in 
proof of correctness.

In 1969, my proof rules for programs 
were devised to extract easily from 
a well-asserted program the math-
ematical ‘verification conditions’, the 
proof of which is required to establish 
program correctness. I expected that 
these conditions would be proved by 
the reasoning methods of standard 
logic, on the basis of standard axioms 
and theories of discrete mathematics. 
What has happened in recent years is 
exactly the opposite of this, and even 
more interesting. New branches of 
applied discrete mathematics have 
been developed to formalize the pro-
gramming concepts that have been 
introduced since 1969 into standard 
programming languages (for example, 
objects, classes, heaps, pointers). New 
forms of algebra have been discovered 
for application to distributed, concur-
rent, and communicating processes. 
New forms of modal logic and abstract 
domains, with carefully restricted ex-
pressive power, have been invented to 
simplify human and mechanical rea-

a programming language, and the ease 
with which programmers could use it. 
For this reason, I appealed to academic 
researchers engaged in programming 
language design to help me in the re-
search. The latest response comes from 
hardware designers, who are using axi-
oms in anger (and for the same reasons 
as given above) to define the properties 
of modern multicore chips with weak 
memory consistency.

One thing I got spectacularly wrong. 
I could see that programs were getting 
larger, and I thought that testing would 
be an increasingly ineffective way of re-
moving errors from them. I did not real-
ize that the success of tests is that they 
test the programmer, not the program. 
Rigorous testing regimes rapidly per-
suade error-prone programmers (like 
me) to remove themselves from the 
profession. Failure in test immediately 
punishes any lapse in programming 
concentration, and (just as important) 
the failure count enables implementers 
to resist management pressure for pre-
mature delivery of unreliable code. The 
experience, judgment, and intuition of 
programmers who have survived the rig-
ors of testing are what make programs 
of the present day useful, efficient, and 
(nearly) correct. Formal methods for 
achieving correctness must support the 
intuitive judgment of programmers, not 
replace it.

My basic mistake was to set up proof 
in opposition to testing, where in fact 
both of them are valuable and mutu-
ally supportive ways of accumulating 
evidence of the correctness and service-
ability of programs. As in other branches 
of engineering, it is the responsibility of 
the individual software engineer to use 
all available and practicable methods, 
in a combination adapted to the needs 
of a particular project, product, client, 
or environment. The best contribution 
of the scientific researcher is to extend 
and improve the methods available to 
the engineer, and to provide convincing 
evidence of their range of applicability. 
Any more direct advocacy of personal 
research results actually excites resis-
tance from the engineer.

Progress (1999–2009)
On retirement from University, I ac-
cepted a job offer from Microsoft Re-
search in Cambridge (England). I was 
surprised to discover that assertions, 

soning about programs. They include 
the dynamic logic of actions, temporal 
logic, linear logic, and separation logic. 
Some of these theories are now being 
reused in the study of computational 
biology, genetics, and sociology.

Equally spectacular (and to me unex-
pected) progress has been made in the 
automation of logical and mathemati-
cal proof. Part of this is due to Moore’s 
Law. Since 1969, we have seen steady ex-
ponential improvements in computer 
capacity, speed, and cost, from mega-
bytes to gigabytes, and from megahertz 
to gigahertz, and from megabucks to 
kilobucks. There has been also at least 
a thousand-fold increase in the efficien-
cy of algorithms for proof discovery and 
counterexample (test case) generation. 
Crudely multiplying these factors, a 
trillion-fold improvement has brought 
us over a tipping point, at which it has 
become easier (and certainly more reli-
able) for a researcher in verification to 
use the available proof tools than not to 
do so. There is a prospect that the activ-
ities of a scientific user community will 
give back to the tool-builders a wealth 
of experience, together with realistic 
experimental and competition materi-
al, leading to yet further improvements 
of the tools.

For many years I used to speculate 
about the eventual way in which the re-
sults of research into verification might 
reach practical application. A general 
belief was that some accident or se-
ries of accidents involving loss of life, 
perhaps followed by an expensive suit 
for damages, would persuade software 
managers to consider the merits of pro-
gram verification. 

This never happened. When a bug 
occurred, like the one that crashed the 
maiden flight of the Ariane V spacecraft 
in 1996, the first response of the manag-
er was to intensify the test regimes, on 
the reasonable grounds that if the erro-
neous code had been exercised on test, 
it would have been easily corrected be-
fore launch. And if the issue ever came 
to court, the defense of ‘state-of-the-art’ 
practice would always prevail. It was 
clearly a mistake to try to frighten peo-
ple into changing their ways. Far more 
effective is the incentive of reduction in 
cost. A recent report from the U.S. De-
partment of Commerce has suggested 
that the cost of programming error to 
the world economy is measured in tens 

I did not realize that 
the success of tests  
is that they test  
the programmer,  
not the program.
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of billions of dollars per year, most of it 
falling (in small but frequent doses) on 
the users of software rather than on the 
producers. 

The phenomenon that triggered in-
terest in software verification from the 
software industry was totally unpredict-
ed and unpredictable. It was the attack 
of the hacker, leading to an occasional 
shutdown of worldwide commercial 
activity, costing an estimated $4 billion 
on each occasion. A hacker exploits 
vulnerabilities in code that no reason-
able test strategy could ever remove 
(perhaps by provoking race conditions, 
or even bringing dead code cunningly 
to life). The only way to reach these vul-
nerabilities is by automatic analysis 
of the text of the program itself. And it 
is much cheaper, whenever possible, 
to base the analysis on mathematical 
proof, rather than to deal individually 
with a flood of false alarms. In the in-
terests of security and safety, other 
industries (automobile, electronics, 
aerospace) are also pioneering the use 
of formal tools for programming. There 
is now ample scope for employment of 
formal methods researchers in applied 
industrial research. 

Prospective (2009–)
In 1969, I was afraid industrial re-
search would dispose such vastly su-
perior resources that the academic 
researcher would be well advised to 
withdraw from competition and 
move to a new area of research. But 
again, I was wrong. Pure academic re-
search and applied industrial research 
are complementary, and should be 
pursued concurrently and in collabo-
ration. The goal of industrial research

is (and should always be) to pluck the 
‘low-hanging fruit’; that is, to solve 
the easiest parts of the most prevalent 
problems, in the particular circum-
stances of here and now. But the goal 
of the pure research scientist is exactly 
the opposite: it is to construct the most 
general theories, covering the widest 
possible range of phenomena, and to 
seek certainty of knowledge that will 
endure for future generations. It is to 
avoid the compromises so essential to 
engineering, and to seek ideals like ac-
curacy of measurement, purity of mate-
rials, and correctness of programs, far 
beyond the current perceived needs of 
industry or popularity in the market-
place. For this reason, it is only scien-
tific research that can prepare man-
kind for the unknown unknowns of the 
forever uncertain future.

So I believe there is now a better scope 
than ever for pure research in computer 
science. The research must be motivat-
ed by curiosity about the fundamental 
principles of computer programming, 
and the desire to answer the basic ques-
tions common to all branches of sci-
ence: what does this program do; how 
does it work; why does it work; and what 
is the evidence for believing the answers 
to all these questions? We know in prin-
ciple how to answer them. It is the speci-
fications that describes what a program 
does; it is assertions and other internal 
interface contracts between component 
modules that explain how it works; it is 
programming language semantics that 
explains why it works; and it is math-
ematical and logical proof, nowadays 
constructed and checked by computer, 
that ensures mutual consistency of 
specifications, interfaces, programs, 
and their implementations. 

There are grounds for hope that 
progress in basic research will be much 
faster than in the early days. I have 
already described the vastly broader 
theories that have been proposed to 
understand the concepts of modern 
programming. I have welcomed the 
enormous increase in the power of au-
tomated tools for proof. The remaining 
opportunity and obligation for the sci-
entist is to conduct convincing experi-
ments, to check whether the tools, and 
the theories on which they are based, 
are adequate to cover the vast range of 
programs, design patterns, languages, 
and applications of today’s comput-

ers. Such experiments will often be the 
rational reengineering of existing real-
istic applications. Experience gained 
in the experiments is expected to lead 
to revisions and improvements in the 
tools, and in the theories on which 
the tools were based. Scientific rivalry 
between experimenters and between 
tool builders can thereby lead to an ex-
ponential growth in the capabilities of 
the tools and their fitness to purpose. 
The knowledge and understanding 
gained in worldwide long-term re-
search will guide the evolution of so-
phisticated design automation tools 
for software, to match the design au-
tomation tools routinely available to 
engineers of other disciplines.

The End
No exponential growth can continue 
forever. I hope progress in verifica-
tion will not slow down until our 
programming theories and tools are 
adequate for all existing applications 
of computers, and for supporting the 
continuing stream of innovations 
that computers make possible in all 
aspects of modern life. By that time, 
I hope the phenomenon of program-
ming error will be reduced to insignif-
icance: computer programming will 
be recognized as the most reliable of 
engineering disciplines, and com-
puter programs will be considered 
the most reliable components in any 
system that includes them. 

Even then, verification will not be a 
panacea. Verification technology can 
only work against errors that have been 
accurately specified, with as much ac-
curacy and attention to detail as all 
other aspects of the programming task. 
There will always be a limit at which the 
engineer judges that the cost of such 
specification is greater than the benefit 
that could be obtained from it; and that 
testing will be adequate for the pur-
pose, and cheaper. Finally, verification 
cannot protect against errors in the 
specification itself. All these limits can 
be freely acknowledged by the scien-
tist, with no reduction in enthusiasm 
for pushing back the limits as far as 
they will go. 

C.A.R. Hoare (thoare@microsoft.com) is a principal 
researcher at Microsoft Research in Cambridge, U.K., and 
Emeritus Professor of Computing at Oxford University.  

Copyright held by author.

The phenomenon that 
triggered interest in 
software verification 
from the software 
industry was totally 
unpredicted and 
unpredictable.
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1. Introduction 
Computer  programming is an exact science in tha t  all 

the properties of a program and all the consequences of 
executing it  in any given environment can, in principle, 
be found out from the text of the program itself by means 
of purely deductive reasoning. Deductive reasoning in- 
volves the application of valid rules of inference to sets of 
valid axioms. I t  is therefore desirable and interesting to 
elucidate the axioms and rules of inference which underlie 
our reasoning about computer programs. The exact choice 
of axioms will to some extent depend on the choice of 
programming language. For illustrative purposes, this 
paper is confined to a very simple language, which is effec- 
tively a subset of all eurrent procedure-oriented languages. 

2. Computer Arithmetic  
The first requirement in valid reasoning about a pro- 

gram is to know the properties of the elementary operations 
which it  invokes, for example, addition and multiplication 
of integers. Unfortunately, in several respects computer 
arithmetic is not the same as the arithmetic familiar to 
mathematicians, and it  is necessary to exercise some care 
in selecting an appropriate set of axioms. For example, the 
axioms displayed in Table I are rather a small selection 
of axioms relevant to integers. From this incomplete set 

* Depurtment of Computer Science 

of axioms it is possible to deduce such simple theorems as: 

x = x + y X O  

y < r  ~ r  + y  X q = ( r -  y) + y  X (1 + q )  

The proof of the second of these is: 

A5 ( r - - y )  + y X ( l + q )  

= ( r - - y ) +  ( y X l + y X q )  

A9 = ( r - -  y) + (y + y  X q) 

A3 = ( ( r - - y ) + y ) + y X q  

A6 = r + y X q p rov idedy  < r 

The axioms A1 to A9 are, of course, true of the tradi- 
tional infinite set of integers in mathematics. However, 
they are also true of the finite sets of "integers" which are 
manipulated by computers provided that  they are con- 
fined to nonnegative numbers. Their  t ru th  is independent 
of the size of the set; furthermore, it is largely independent 
of the choice of technique applied in the event of "over- 
flow"; for example: 

(1) Strict interpretation: the result of an overflowing 
operation does not exist; when overflow occurs, the offend- 
ing program never completes its operation. Note that  in 
this case, the equalities of A1 to A9 are strict, in the sense 
that  both sides exist or fail to exist together. 

(2) Firm boundary:  the result of an overflowing opera- 
tion is taken as the maximum value represented. 

(3) Modulo arithmetic: the result of an overflowing 
operation is computed modulo the size of the set of integers 
represented. 

These three techniques are illustrated in Table I I  by 
addition and multiplication tables for a trivially small 
model in which 0, 1, 2, and 3 are the only integers repre- 
sented. 

I t  is interesting to note that  the different systems satisfy- 
ing axioms A1 to A9 may be rigorously distinguished from 
each other by choosing a particular one of a set of mutually 
exclusive supplementary axioms. For  example, infinite 
arithmetic satisfies the axiom: 

A10z ~ 3 x V y  (y < x), 

where all finite arithmetics satisfy: 

A10~ Vx (x < max) 

where "max" denotes the largest integer represented. 
Similarly, the three treatments of overflow may be 

distinguished by a choice of one of the following aMoms 
relating to the value of max + 1: 

A l l s  ~ 3 x  (x = max + 1) (strict interpretation) 

A l l ,  max + 1 = max (firm boundary)  

AllM max + 1 = 0 (modulo arithmetic) 

Having selected one of these axioms, it  is possible to 
use it  in deducing the properties of programs; however, 
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TABLE I 

A1 x + y = y + x  
A2 x X y = y X x  

A3 (x + y) + z = x +  (y + z) 
A4 (xX y) X z = x X (yX z) 

A5 x X  ( y + z )  = x X  y + x X  z 

A6 y < x D  ( x - -  y ) + y  = x 

A7 x + 0  = x 
A8 x X 0 = 0  
A9 x X l = x  

addition is commutative 
multiplication is commut- 

ative 
addition is associative 
multiplication is associa- 

tive 
multiplication distrib- 

utes through addition 
addition cancels subtrac- 

tion 

TABLE II 

1. 
+ 0 1  

0 0 1 2 
1 1 2 3  
2 2 3 * 
3 3 * * 
• nonexistent 

StrictInterpretation 
2 3  x 0 1 2  

3 0 0 0 0  
* 1 0 1 2  
* 2 0 2 *  
* 3 0 3 *  

+ 
2. FirmBoundary 

1 2 3  × 0 1 2 3  

1 2 3  0 0 0 0 0  
2 3 3  1 0 1 2 3  
3 3 3  2 0 2 3 3  
3 3 3  3 0 3 3 3  

3. 
+ 0 1 2  

0 0 1 2 
1 1 2 3  
2 2 3 0  
3 3 0 1 

Modulo Arithmetic 
3 X 0 1 2 

3 0 0 0 0  
0 1 0 1 2 
1 2 0 2 0  
2 3 0 3 2 

these properties will not necessarily obtMn, unless the 
program is executed on an implementation which satisfies 
the chosen axiom. 

3. P r o g r a m  Execu t ion  

As mentioned above, the purpose of this study is to 
provide a logical basis for proofs of the properties of a 
program. One of the most important  properties of a pro- 
gram is whether or not it carries out its intended function. 
The intended function of a program, or part  of a program, 
can be specified by making general assertions about the 
values which the relevant variables will take after execution 
of the program. These assertions will usually not ascribe 
particular values to each variable, but  will rather specify 
certain general properties of the values and the relation- 
ships holding between them. We use the normal notations 

of mathematical logic to express these assertions, and the 
familiar rules of operator precedence have been used 
wherever possible to improve legibility. 

In  many cases, the validity of the results of a program 
(or part  of a program) will depend on the values taken 
by the variables before that  program is initiated. These 
initial preconditions of successful use can be specified by 
the same type of general assertion as is used to describe 
the results obtained on termination. To state the required 
connection between a precondition (P), a program (Q) 
and a description of the result of its execution (R), we 
introduce a new notation: 

P { Q } R .  

This may be interpreted " I f  the assertion P is true before 
initiation of a program Q, then the assertion R will be 
true on its completion." If  there are no preconditions im- 
posed, we write t r u e  { Q } R )  

The treatment given below is essentially due to Floyd 
[8] but is applied to texts rather than flowcharts. 

3.1. Axiom OF ASSIGNMENT 
Assignment is undoubtedly the most characteristic fea- 

ture of programming a digital computer, and one that  
most clearly distinguishes it from other branches of mathe- 
matics. I t  is surprising therefore that  the axiom governing 
our reasoning about assignment is quite as simple as any 
to be found in elementary logic. 

Consider the assignment statement: 

x : = f  

where 
x is an identifier for a simple variable; 
f is an expression of a programming language without 

side effects, but  possibly containing x. 
Now any assertion P (x) which is to be true of (the value 

of) x after the assignment is made must also have been 
true of (the value of) the expression f, taken before the 
assignment is made, i.e. with the old value of x. Thus 
if P (x) is to be true after the assignment, then P (f) must 
be true before the assignment. This fact may be expressed 
more formally: 

DO Axiom of Assignment 
 -P0 {x := f} P 

where 
x is a variable identifier; 
f is an expression; 
P0 is obtained from P by substituting f for all occur- 

rences of x. 
I t  may be noticed that  DO is not really an axiom at all, 

but  rather an axiom schema, describing an infinite set of 
axioms which share a common pattern. This pattern is 
described in purely syntactic terms, and it is easy to 
cheek whether any finite text conforms to the pattern, 
thereby qualifying as an axiom, which may validly appear 
in any line of a proof. 

1 If this can be proved in our formal system, we use the familiar 
logical symbol for theoremhood: [-P {Q} R 

Volume 12 / Number 10 / October, 1969 Communications of the ACM 577 



3.2. RULES OF CONSEQUENCE 
In addition to axioms, a deductive science requires at  

least one rule of inference, which permits the deduction of 
new theorems from one or more axioms or theorems al- 
ready proved. A rule of inference takes the form " I f  ~-X 
and ~- Y then ~-Z", i.e. if assertions of the form X and Y 
have been proved as theorems, then Z also is thereby 
proved as a theorem. The simplest example of an inference 
rule states tha t  if the execution of a program Q en- 
sures the t ru th  of the assertion R, then it  also ensures the 
t ru th  of every assertion logically implied by R. Also, if 
P is known to be a precondition for a program Q to pro- 
duce result R, then so is any other assertion which logically 
implies P.  These rules may be expressed more formally: 

D1 Rules of Consequence 
If  ~-P{Q}R and ~-R D S then ~-P{Q}S 
If ~-P{Q}R and ~-S ~ P then ~-S{Q}R 

3.3. RULE OF COMPOSITION 
A program generally consists of a sequence of statements 

which are executed one after another. The statements may 
be separated by a semicolon or equivalent symbol denoting 
procedural composition: (Q1 ; Q2 ; " '"  ; Q~). In  order to 
avoid the awkwardness of dots, it  is possible to deal ini- 
tially with only two statements (Q1 ; Q2), since longer se- 
quences can be reconstructed by nesting, thus (Q~ ; (Q2 ; 
( " "  (Q,-1 ; Q.)  - ' "  ) ) ) .  The  removal of the brackets of 
this nest may be regarded as convention based on the 
associativity of the ";-operator",  in the same way as brack- 
ets are removed from an arithmetic expression (6 + (t2 + 
( . . -  (t,_~ + t , )  - - . ) ) ) .  

The  inference rule associated with composition states 
tha t  if the proven result of the first par t  of a program is 
identical with the precondition under which the second par t  
of the program produces its intended result, then the whole 
program will produce the intended result, provided that  the 
precondition of the first part  is satisfied. 

In  more formal terms: 
D2 Rule of Composition 

If ~-P{QdR1 and ~-R~{Q2}R then ~-P{ (Q~ ; Q2)}R 
3.4. RvL~ OF ITERATION 
The essential feature of a stored program computer is 

the ability to execute some portion of program (S) re- 
peatedly until  a condition (B) goes false. A simple way of 
expressing such an iteration is to adapt  the ALGOL 60 
w h i l e  notation: 

w h i l e  B d o  S 

In  executing this statement,  a computer first tests the con- 
dition B. If  this is false, S is omitted, and execution of the 
loop is complete. Otherwise, S is executed and B is tested 
again. This action is repeated until B is found to be false. 
The reasoning which leads to a formulation of an inference 
rule for iteration is as follows. Suppose P to be an assertion 
which is always true on completion of S, provided tha t  it  is 
also true on initiation. Then obviously P will still be true 
after any number of iterations of the s tatement  S (even 

no iterations). Furthermore,  it  is known tha t  the con- 
trolling condition B is false when the iteration finally 
terminates. A slightly more powerful formulation is pos- 
sible in light of the fact tha t  B may be assumed to be true 
on initiation of S: 

D3 Rule of Iteration 
If ~P A B{S}P then ~-P{while B do S} ~ B  A P 

3.5. EXAMPLE 
The axioms quoted above are sufficient to construct the 

proof of properties of simple programs, for example, a 
routine intended to find the quotient q and remainder r 
obtained on dividing x by y. All variables are assumed to 
range over a set of nonnegative integers conforming to the 
axioms listed in Table I. For  simplicity we use the trivial 
but  inefficient method of successive subtraction. The pro- 
posed program is: 
((r  := x; q := 0);  w h i l e  

y < r d o  ( r : = r - - y ;  q : =  l + q ) )  
An important  property of this program is tha t  when it  
terminates, we can recover the numerator  x by adding to 
the remainder r the product  of the divisor y and the quo- 
t ient  q (i.e. x = r + y X q). Furthermore,  the remainder 
is less than the divisor. These properties may be expressed 
formally: 

t r u e { Q }  ~ y  ~< r A x  = r + y X q 

where Q stands for the program displayed above. This 
expresses a necessary (but not sufficient) condition for 
the "correctness" of the program. 

A formal proof of this theorem is given in Table III .  
Like all formal proofs, it  is excessively tedious, and it 
would be fairly easy to introduce notational conventions 
which would significantly shorten it. An even more power- 
ful method of reducing the tedium of formal proofs is to 
derive general rules for proof construction out of the simple 
rules accepted as postulates. These general rules would be 
shown to be valid by demonstrating how every theorem 
proved with their assistance could equally well (if more 
tediously) have been proved without. Once a powerful set 
of supplementary rules has been developed, a "formal 
proof" reduces to little more than an informal indication 
of how a formal proof could be constructed. 

4. G e n e r a l  R e s e r v a t i o n s  

The axioms and rules of inference quoted in this paper 
have implicitly assumed the absence of side effects of the 
evaluation of expressions and conditions. In  proving prop- 
erties of programs expressed in a language permitting side 
effects, it  would be necessary to prove their absence in 
each ease before applying the appropriate proof technique. 
I f  the main purpose of a high level programming language 
is to assist in the construction and verification of correct 
programs, it  is doubtful whether the use of functional 
notation to call procedures with side effects is a genuine 
advantage.  

Another deficiency in the axioms and rules quoted above 
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is that  they give no basis for a proof that  a program suc- 
cessfully terminates. Failure to terminate may be due to an 
infinite loop; or it  may be due to violation of an imple- 
mentation-defined limit, for example, the range of numeric 
operands, the size of storage, or an operating system time 
limit. Thus the notation "PIQ}R" should be interpreted 
"provided tha t  the program successfully terminates, the 
properties of its results are described by R." I t  is fairly 
easy to adapt the axioms so that  they cannot be used to 
predict the "results" of nonterminating programs; but  the 
actual use of the axioms would now depend on knowledge 
of many implementation-dependent features, for example, 
the size and speed of the computer, the range of numbers, 
and the choice of overflow technique. Apart  from proofs of 
the avoidance of infinite loops, it is probably better  to 
prove the "conditional" correctness of a program and rely 
on an implementation to give a warning if it has had to 

TABLE III 

Line 
number Formal proof Justification 

1 t r u e  ~ x  = x ~ y X 0 L e m m a l  
2 x = x - { - y X  O{r := x } x =  r . - t - y X O  DO 
3 x = r ~ y X O { q : =  O } x =  r . - b y X  q DO 
4 t r u e  {r :=  x} x = r ~ y X 0 D1 (1, 2) 
5 t r u e  {r := x; q := 0} x = r -t- y X q D2 (4, 3) 
6 x = r ~ y X  q A y ~ r ~ x  = 

( r - y )  ~ y X (1-t-q) L e m m a  2 
7 x = ( r - - y )  .-{- y X (1-t-q){r := r - y } x  = 

r + y X ( l + q )  DO 
8 x = r + y X ( l + q ) [ q  :=  1.-bq}x = 

r - t - y  X q DO 
9 x = ( r - - y )  -~ y X ( l + q ) { r  :=  r - - y ;  

q :=  1+q} x = r + y X q D2 (7, 8) 
10 x = r + y X q A y ~ r {r := r - - y ;  

, q : =  l + q }  x = r + y X q D1  (6, 9) 
11 x = r -b y X q [ w h i l e  y ~ r  d o  

(r := r - - y ;  q := 1--bq)} 
~- -Ty < r /~ x = r ~ y X q D3 (10) 

12 t r u e  {((r := x; q := 0); w h i l e  y ~ r d o  
(r := r - - y ;  q :=  l + q ) ) }  -~y ~ r A x  = 
r + y X q D2 (5,11) 

NOTES 
i. The left hand column is used to number the lines, and the 

right hand column to justify each line, by appealing to an axiom, 
a lemma or a rule of inference applied to one or two previous 
lines, indicated in brackets. Neither of these columns is part 
of the formal proof. For example, line 2 is an instance of the 
axiom of assignment (DO); line 12 is obtained from lines 5 and 11 
by application of the rule of composition (D2). 

2. Lemma 1 may be proved from axioms A7 and AS. 
3. Lemma 2 follows directly from the theorem proved in See. 2. 

abandon execution of the program as a result of violation 
of an implementation limit. 

Finally it is necessary to list some of the areas which have 
not been covered: for example, real arithmetic, bit and 
character manipulation, complex arithmetic, fractional 
arithmetic, arrays, records, overlay definition, files, input /  
output,  declarations, subroutines, parameters, recursion, 
and parallel execution. Even the characterization of integer 
arithmetic is far from complete. There does not appear to 
be any great difficulty in dealing with these points, pro- 
vided that  the programming language is kept simple. 
Areas which do present real difficulty are labels and jumps, 
pointers, and name parameters. Proofs of programs which 
made use of these features are likely to be elaborate, and 
it  is not surprising that  this should be reflected in the 
complexity of the underlying axioms. 

5. P r o o f s  o f  P r o g r a m  C o r r e c t n e s s  
The most important  property of a program is whether it  

accomplishes the intentions of its user. If  these intentions 
can be described rigorously by making assertions about the 
values of variables at  the end (or at  intermediate points) of 
the execution of the program, then the techniques described 
in this paper may be used to prove the correctness of the 
program, provided that  the implementation of the pro- 
gramming language conforms to the axioms and rules which 
have been used in the proof. This fact itself might also be 
established by deductive reasoning, using an axiom set 
which describes the logical properties of the hardware 
circuits. When the correctness of a program, its compiler, 
and the hardware of the computer have all been established 
with mathematical certainty, it  will be possible to place 
great reliance on the results of the program, and predict 
their properties with a confidence limited only by the 
reliability of the electronics. 

The practice of supplying proofs for nontrivial programs 
will not become widespread until considerably more power- 
ful proof techniques become available, and even then will 
not be easy. But  the practical advantages of program prov- 
ing will eventually outweigh the difficulties, in view of the 
increasing costs of programming error. At present, the 
method which a programmer uses to convince himself of 
the correctness of his program is to t ry  it  out in particular 
cases and to modify it  if the results produced do not cor- 
respond to his intentions. After he has found a reasonably 
wide variety of example cases on which the program seems 
to work, he believes that  it  will always work. The time 
spent in this program testing is often more than half the 
time spent on the entire programming project; and with a 
realistic costing of machine time, two thirds (or more) of 
the cost of the project is involved in removing errors during 
this phase. 

The cost of removing errors discovered after a program 
has gone into use is often greater, particularly in the case 
of items of computer manufacturer 's software for which a 
large part  of the expense is borne by the user. And finally, 
the cost of error in certain types of program may be almost 
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inealculable--a lost spacecraft, a collapsed building, a 
crashed aeroplane, or a world war. Thus the practice of 
program proving is not only a theoretical pursuit, followed 
in the interests of academic respectability, but  a serious 
recommendation for the reduction of the costs associated 
with programming error. 

The practice of proving programs is likely to alleviate 
some of the other problems which afflict the computing 
world. For example, there is the problem of program docu- 
mentation, which is essential, firstly, to inform a potential 
user of a subroutine how to use it  and what it accomplishes, 
and secondly, to assist in further development when it  
becomes necessary to update a program to meet changing 
circumstances or to improve it  in the light of increased 
knowledge. The most rigorous method of formulating the 
purpose of a subroutine, as well as the conditions of its 
proper use, is to make assertions about the values of vari- 
ables before and after its execution. The proof of the cor- 
rectness of these assertions can then be used as a lemmain 
the proof of any program which calls the subroutine. Thus, 
in a large program, the structure of the whole can be clearly 
mirrored in the structure of its proof. Furthermore, when 
it becomes necessary to modify a program, it will always be 
valid to replace any subroutine by another which satisfies 
the same criterion of correctness. Finally, when examining 
the detail of the algorithm, it  seems probable tha t  the proof 
will be helpful in explaining not only what is happening 
but  why. 

Another problem which can be solved, insofar as it is 
soluble, by the practice of program proofs is tha t  of trans- 
ferring programs from one design of computer to another. 
Even when written in a so-called machine-independent 
programming language, many large programs inadvert- 
ently take advantage of some machine-dependent prop- 
erty of a particular implementation, and unpleasant and 
expensive surprises can result when attempting to transfer 
it  to another machine. However, presence of a machine- 
dependent feature will always be revealed in advance by 
the fMlure of an a t tempt  to prove the program from ma- 
chine-independent axioms. The programmer will then have 
the choice of formulating his algorithm in a machine- 
independent fashion, possibly with the help of environment 
enquiries; or if this involves too much effort or inefficiency, 
he can deliberately construct a machine-dependent pro- 
gram, and rely for his proof on some machine-dependent 
axiom, for example, one of the versions of A11 (Section 2). 
In  the latter case, the axiom must be explicitly quoted as 
one of the preconditions of successful use of the program. 
The program can still, with complete confidence, be trans- 
ferred to any other machine which happens to satisfy the 
same machine-dependent axiom; but  if it  becomes neces- 
sary to transfer it to an implementation which does not, 
then all the places where changes are required[will be 
clearly annotated by the fact that  the proof at tha t  point 
appeals to the t ru th  of the offending machine-dependent 
axiom. 

Thus the practice of proving programs would seem to 

lead to solution of three of the most pressing problems in 
software and programming, namely, reliability, documen- 
tation, and compatibility. However, program proving, cer- 
tainly at present, will be difficult even for programmers of 
high caliber; and may be applicable only to quite simple 
program designs. As in other areas, reliability can be pur- 
chased only at  the price of simplicity. 

6. Formal Language Definition 
A high level programming language, such as ALc~oL, 

FORTRAN, or COBOL, is usually intended to be implemented 
on a variety of computers of differing size, configuration, 
and design. I t  has been found a serious problem to define 
these languages with sufficient rigour to ensure compat- 
ibility among all implementors. Since the purpose of com- 
patibility is to facilitate interchange of programs ex- 
pressed in the language, one way to achieve this would be to 
insist tha t  all implementations of the language shall "sat- 
isfy" the axioms and rules of inference which underlie 
proofs of the properties of programs expressed in the 
language, so tha t  all predictions based on these proofs will 
be fulfilled, except in the event of hardware failure. In 
effect, this is equivalent to accepting the axioms and rules 
of inference as the ultimately definitive specification of the 
meaning of the language. 

Apart  from giving an immediate and possibly even 
provable criterion for the correctness of an implementation, 
the axiomatic technique for the definition of programming 
language semantics appears to be like the formal syntax of 
the ALaOL 60 report, in tha t  it is sufficiently simple to be 
understood both by the implementor and by the reasonably 
sophisticated user of the language. I t  is only by bridging 
this widening communication gap in a single document 
(perhaps even provably consistent) tha t  the maximum 
advantage can be obtained from a formal language def- 
inition. 

Another of the great advantages of using an axiomatic 
approach is tha t  axioms offer a simple and flexible tech- 
nique for leaving certain aspects of a language undefined, 
for example, range of integers, accuracy of floating point, 
and choice of overflow technique. This is absolutely es- 
sential for standardization purposes, since otherwise the 
language will be impossible to implement efficiently on 
differing hardware designs. Thus a programming language 
standard should consist of a set of axioms of universal 
applicability, together with a choice from a set of supple- 
mentary axioms describing the range of choices facing an 
implementor. An example of the use of axioms for this 
purpose was given in Section 2. 

Another of the objectives of formal language definition 
is to assist in the design of bet ter  programming languages. 
The regularity, clarity, and ease of implementation of the 
ALGOL 60 syntax may at least in part  be due to the use of 
an elegant formal technique for its definition. The use of 
axioms may lead to similar advantages in the area of 
"semantics," since it seems likely that  a language which can 

(Continued on p. 583) 
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by Lowe. In addition, we define F(j) = ~ = ~  f(i) and 
write Ix] for the greatest integer not exceeding x. 

In a packed list file, the bucket which contains the first 
element of list j will have its first 

F(j) -- C[F(j)/C] (1) 

positions occupied by lists j - 1, j - 2, . . . .  For any 
practical file, when j is not a small integer, (1) behaves as 
a random variable uniformly distributed between 0 and C. 
In other words, the start of a list is independent of bucket 
boundaries. I t  is easy to see that the expected number of 
accesses required to retrieve list j is f ( j ) / C  ~ 1. 

Hence we have 

T,  = t~ ( f ( j ) / C  + 1 ) p ( j )  , 

(2) 
.'. T, / t ,  -- 1 + ~ f ( j ) p ( j ) / C ,  

since ~ f = l  p(j) = 1. Equation (2) corresponds to (11) 
in [1]. 

The assumptions on f ( j )  and p(j)  in [1] may be sub- 
stituted into (2). The first two assumptions yield 

Tr/t, = 1 + S /NC,  (3) 

and the third assumption, for large N, yields approximately 

T~/t~ = 1 + (lnN + ~)-2~-V6. (4) 

These equations should be compared with the right-hand 
inequalities of (13) and (24) in [1]. 
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be described by a few "self-evident" axioms from which 
proofs will be relatively easy to construct will be preferable 
to a language with many obscure axioms which are dif- 
ficult to apply in proofs. Furthermore, axioms enable the 
language designer to express his general intentions quite 
simply and directly, without the mass of detail which 
usually accompanies algorithmic descriptions. Finally, ax- 
ioms can be formulated in a manner largely independent 
of each other, so that the designer can work freely on one 
axiom or group of axioms without fear of unexpected in- 
teraction effects with other parts of the language. 

Acknowledgments. Many axiomatic treatments of com- 
puter programming [1, 2, 3] tackle the problem of proving 
the equivalence, rather than the correctness, of algorithms. 
Other approaches [4, 5] take recursive functions rather 
than programs as a starting point for the theory. The 
suggestion to use axioms for defining the primitive opera- 
tions of a computer appears in [6, 7]. The importance of 
program proofs is clearly emphasized in [9], and an in- 
formal technique for providing them is described. The 
suggestion that the specification of proof techniques pro- 
vides an adequate formal definition of a programming 
language first appears in [8]. The formal treatment of pro- 
gram execution presented in this paper is clearly derived 
from Floyd. The main contributions of the author appear 
to be: (1) a suggestion that axioms may provide a simple 
solution to the problem of leaving certain aspects of a 

language undefined; (2) a comprehensive evaluation of 
the possible benefits to be gained by adopting this approach 
both for program proving and for formal language defini- 
tion. 

However, the formal material presented here has only 
an expository status and represents only a minute propor- 
tion of what remains to be done. I t  is hoped that many of 
the fascinating problems involved will be taken up by 
others. 

RECEIVED NOVEMBER, 1968; REVISED MAY, 1969 

REFERENCES 

i. YANOV, Yu I. Logical operator schemes. Kybernetika I, (1958). 
2. IGARASHI, S. An axiomatic approach to equivalence problems 

of algorithms with applications. Ph.D. Thesis 1964. Rep. 
Compt. Centre, U. Tokyo, 1968, pp. i-I01. 

3. DE BAKICER, J. W. Axiomatics of simple assignment statements. 
M.R. 94, Mathematisch Centrum, Amsterdam, June 1968. 

4. McCARTHY, J. Towards a mathematical theory of computation. 
Proc. IFIP Cong. 1962, North Holland Pub. Co., Amsterdam, 
1963. 

5. BURSTALL, R. Proving properties of programs by structural in- 
duction. Experimental Programming Reports: No. 17 DMIP, 
Edinburgh, Feb. 1968. 

6. VAN WIJNGAARDEN, A. Numerical analysis as an independent 
science. B I T  6 (1966), 66-81. 

7. LASKI, J. Sets and other types. ALGOL Bull. 27, 1968. 
8. FLOYD, R. W. Assigning meanings to programs. Proc. Amer. 

Math. Soc. Symposia in Applied Mathematics, Vol. 19, pp. 
19-31. 

9. N~_uR, P. Proof of algorithms by general snapshots. B I T  6 
(1966), 310-316. 

Volume 12 / Number  10 / October,  1969 Communica t ions  of  the  ACM 583 


