
30 COMMUNICATIONS OF THE ACM | OCTOBER 2009 | VOL. 52 | NO. 10

V viewpoints

THIS MONTH MARKS the 40th an-
niversary of the publication
of the first article I wrote as an
academic.a I have been invited
to give my personal view of the

advances that have been made in the
subject since then, and the further ad-
vances that remain to be made. Which
of them did I expect, and which of them
surprised me?

Retrospective (1969–1999)
My first job (1960–1968) was in the
computer industry; and my first major
project was to lead a team that imple-
mented an early compiler for ALGOL
60. Our compiler was directly struc-
tured on the syntax of the language, so
elegantly and so rigorously formalized
as a context-free language. But the se-
mantics of the language was even more
important, and that was left informal
in the language definition. It occurred
to me that an elegant formalization
might consist of a collection of axioms,
similar to those introduced by Euclid
to formalize the science of land mea-
surement. My hope was to find axioms
that would be strong enough to en-
able programmers to discharge their
responsibility to write correct and ef-
ficient programs. Yet I wanted them
to be weak enough to permit a variety
of efficient implementation strategies,
suited to the particular characteristics

a Hoare, C.A.R. An axiomatic basis for comput-
er programming. Commun. ACM 12, 10 (Oct.
1969), 576–580.

of the widely varying hardware archi-
tectures prevalent at the time.

I expected that research into the axi-
omatic method would occupy me for my
entire working life; and I expected that
its results would not find widespread
practical application in industry until
after I reached retirement age. These ex-

pectations led me in 1968 to move from
an industrial to an academic career. And
when I retired in 1999, both the positive
and the negative expectations had been
entirely fulfilled.

The main attraction of the axiomatic
method was its potential provision of
an objective criterion of the quality of

DOI:10.1145/1562764.1562779 C.A.R. Hoare

Viewpoint
Retrospective: An Axiomatic Basis
for Computer Programming
C.A.R. Hoare revisits his past Communications article on the axiomatic
approach to programming and uses it as a touchstone for the future.

C.A.R. Hoare attending the NATO Software Engineering Techniques Conference in 1969. P
H

O
T

O
G

R
A

P
H

 B
Y

 R
O

B
E

R
T

 M
.

M
cC

L
U

R
E

V viewpoints

OCTOBER 2009 | VOL. 52 | NO. 10 | COMMUNICATIONS OF THE ACM 31

sprinkled more or less liberally in the
program text, were used in development
practice, not to prove correctness of pro-
grams, but rather to help detect and di-
agnose programming errors. They are
evaluated at runtime during overnight
tests, and indicate the occurrence of any
error as close as possible to the place in
the program where it actually occurred.
The more expensive assertions were
removed from customer code before
delivery. More recently, the use of asser-
tions as contracts between one module
of program and another has been incor-
porated in Microsoft implementations
of standard programming languages.
This is just one example of the use of
formal methods in debugging, long be-
fore it becomes possible to use them in
proof of correctness.

In 1969, my proof rules for programs
were devised to extract easily from
a well-asserted program the math-
ematical ‘verification conditions’, the
proof of which is required to establish
program correctness. I expected that
these conditions would be proved by
the reasoning methods of standard
logic, on the basis of standard axioms
and theories of discrete mathematics.
What has happened in recent years is
exactly the opposite of this, and even
more interesting. New branches of
applied discrete mathematics have
been developed to formalize the pro-
gramming concepts that have been
introduced since 1969 into standard
programming languages (for example,
objects, classes, heaps, pointers). New
forms of algebra have been discovered
for application to distributed, concur-
rent, and communicating processes.
New forms of modal logic and abstract
domains, with carefully restricted ex-
pressive power, have been invented to
simplify human and mechanical rea-

a programming language, and the ease
with which programmers could use it.
For this reason, I appealed to academic
researchers engaged in programming
language design to help me in the re-
search. The latest response comes from
hardware designers, who are using axi-
oms in anger (and for the same reasons
as given above) to define the properties
of modern multicore chips with weak
memory consistency.

One thing I got spectacularly wrong.
I could see that programs were getting
larger, and I thought that testing would
be an increasingly ineffective way of re-
moving errors from them. I did not real-
ize that the success of tests is that they
test the programmer, not the program.
Rigorous testing regimes rapidly per-
suade error-prone programmers (like
me) to remove themselves from the
profession. Failure in test immediately
punishes any lapse in programming
concentration, and (just as important)
the failure count enables implementers
to resist management pressure for pre-
mature delivery of unreliable code. The
experience, judgment, and intuition of
programmers who have survived the rig-
ors of testing are what make programs
of the present day useful, efficient, and
(nearly) correct. Formal methods for
achieving correctness must support the
intuitive judgment of programmers, not
replace it.

My basic mistake was to set up proof
in opposition to testing, where in fact
both of them are valuable and mutu-
ally supportive ways of accumulating
evidence of the correctness and service-
ability of programs. As in other branches
of engineering, it is the responsibility of
the individual software engineer to use
all available and practicable methods,
in a combination adapted to the needs
of a particular project, product, client,
or environment. The best contribution
of the scientific researcher is to extend
and improve the methods available to
the engineer, and to provide convincing
evidence of their range of applicability.
Any more direct advocacy of personal
research results actually excites resis-
tance from the engineer.

Progress (1999–2009)
On retirement from University, I ac-
cepted a job offer from Microsoft Re-
search in Cambridge (England). I was
surprised to discover that assertions,

soning about programs. They include
the dynamic logic of actions, temporal
logic, linear logic, and separation logic.
Some of these theories are now being
reused in the study of computational
biology, genetics, and sociology.

Equally spectacular (and to me unex-
pected) progress has been made in the
automation of logical and mathemati-
cal proof. Part of this is due to Moore’s
Law. Since 1969, we have seen steady ex-
ponential improvements in computer
capacity, speed, and cost, from mega-
bytes to gigabytes, and from megahertz
to gigahertz, and from megabucks to
kilobucks. There has been also at least
a thousand-fold increase in the efficien-
cy of algorithms for proof discovery and
counterexample (test case) generation.
Crudely multiplying these factors, a
trillion-fold improvement has brought
us over a tipping point, at which it has
become easier (and certainly more reli-
able) for a researcher in verification to
use the available proof tools than not to
do so. There is a prospect that the activ-
ities of a scientific user community will
give back to the tool-builders a wealth
of experience, together with realistic
experimental and competition materi-
al, leading to yet further improvements
of the tools.

For many years I used to speculate
about the eventual way in which the re-
sults of research into verification might
reach practical application. A general
belief was that some accident or se-
ries of accidents involving loss of life,
perhaps followed by an expensive suit
for damages, would persuade software
managers to consider the merits of pro-
gram verification.

This never happened. When a bug
occurred, like the one that crashed the
maiden flight of the Ariane V spacecraft
in 1996, the first response of the manag-
er was to intensify the test regimes, on
the reasonable grounds that if the erro-
neous code had been exercised on test,
it would have been easily corrected be-
fore launch. And if the issue ever came
to court, the defense of ‘state-of-the-art’
practice would always prevail. It was
clearly a mistake to try to frighten peo-
ple into changing their ways. Far more
effective is the incentive of reduction in
cost. A recent report from the U.S. De-
partment of Commerce has suggested
that the cost of programming error to
the world economy is measured in tens

I did not realize that
the success of tests
is that they test
the programmer,
not the program.

32 COMMUNICATIONS OF THE ACM | OCTOBER 2009 | VOL. 52 | NO. 10

viewpoints

of billions of dollars per year, most of it
falling (in small but frequent doses) on
the users of software rather than on the
producers.

The phenomenon that triggered in-
terest in software verification from the
software industry was totally unpredict-
ed and unpredictable. It was the attack
of the hacker, leading to an occasional
shutdown of worldwide commercial
activity, costing an estimated $4 billion
on each occasion. A hacker exploits
vulnerabilities in code that no reason-
able test strategy could ever remove
(perhaps by provoking race conditions,
or even bringing dead code cunningly
to life). The only way to reach these vul-
nerabilities is by automatic analysis
of the text of the program itself. And it
is much cheaper, whenever possible,
to base the analysis on mathematical
proof, rather than to deal individually
with a flood of false alarms. In the in-
terests of security and safety, other
industries (automobile, electronics,
aerospace) are also pioneering the use
of formal tools for programming. There
is now ample scope for employment of
formal methods researchers in applied
industrial research.

Prospective (2009–)
In 1969, I was afraid industrial re-
search would dispose such vastly su-
perior resources that the academic
researcher would be well advised to
withdraw from competition and
move to a new area of research. But
again, I was wrong. Pure academic re-
search and applied industrial research
are complementary, and should be
pursued concurrently and in collabo-
ration. The goal of industrial research

is (and should always be) to pluck the
‘low-hanging fruit’; that is, to solve
the easiest parts of the most prevalent
problems, in the particular circum-
stances of here and now. But the goal
of the pure research scientist is exactly
the opposite: it is to construct the most
general theories, covering the widest
possible range of phenomena, and to
seek certainty of knowledge that will
endure for future generations. It is to
avoid the compromises so essential to
engineering, and to seek ideals like ac-
curacy of measurement, purity of mate-
rials, and correctness of programs, far
beyond the current perceived needs of
industry or popularity in the market-
place. For this reason, it is only scien-
tific research that can prepare man-
kind for the unknown unknowns of the
forever uncertain future.

So I believe there is now a better scope
than ever for pure research in computer
science. The research must be motivat-
ed by curiosity about the fundamental
principles of computer programming,
and the desire to answer the basic ques-
tions common to all branches of sci-
ence: what does this program do; how
does it work; why does it work; and what
is the evidence for believing the answers
to all these questions? We know in prin-
ciple how to answer them. It is the speci-
fications that describes what a program
does; it is assertions and other internal
interface contracts between component
modules that explain how it works; it is
programming language semantics that
explains why it works; and it is math-
ematical and logical proof, nowadays
constructed and checked by computer,
that ensures mutual consistency of
specifications, interfaces, programs,
and their implementations.

There are grounds for hope that
progress in basic research will be much
faster than in the early days. I have
already described the vastly broader
theories that have been proposed to
understand the concepts of modern
programming. I have welcomed the
enormous increase in the power of au-
tomated tools for proof. The remaining
opportunity and obligation for the sci-
entist is to conduct convincing experi-
ments, to check whether the tools, and
the theories on which they are based,
are adequate to cover the vast range of
programs, design patterns, languages,
and applications of today’s comput-

ers. Such experiments will often be the
rational reengineering of existing real-
istic applications. Experience gained
in the experiments is expected to lead
to revisions and improvements in the
tools, and in the theories on which
the tools were based. Scientific rivalry
between experimenters and between
tool builders can thereby lead to an ex-
ponential growth in the capabilities of
the tools and their fitness to purpose.
The knowledge and understanding
gained in worldwide long-term re-
search will guide the evolution of so-
phisticated design automation tools
for software, to match the design au-
tomation tools routinely available to
engineers of other disciplines.

The End
No exponential growth can continue
forever. I hope progress in verifica-
tion will not slow down until our
programming theories and tools are
adequate for all existing applications
of computers, and for supporting the
continuing stream of innovations
that computers make possible in all
aspects of modern life. By that time,
I hope the phenomenon of program-
ming error will be reduced to insignif-
icance: computer programming will
be recognized as the most reliable of
engineering disciplines, and com-
puter programs will be considered
the most reliable components in any
system that includes them.

Even then, verification will not be a
panacea. Verification technology can
only work against errors that have been
accurately specified, with as much ac-
curacy and attention to detail as all
other aspects of the programming task.
There will always be a limit at which the
engineer judges that the cost of such
specification is greater than the benefit
that could be obtained from it; and that
testing will be adequate for the pur-
pose, and cheaper. Finally, verification
cannot protect against errors in the
specification itself. All these limits can
be freely acknowledged by the scien-
tist, with no reduction in enthusiasm
for pushing back the limits as far as
they will go.

C.A.R. Hoare (thoare@microsoft.com) is a principal
researcher at Microsoft Research in Cambridge, U.K., and
Emeritus Professor of Computing at Oxford University.

Copyright held by author.

The phenomenon that
triggered interest in
software verification
from the software
industry was totally
unpredicted and
unpredictable.

mailto:thoare@microsoft.com

An Axiomatic Basis for
Computer Programming

C. A. R. HOARE
The Queen's University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow f rom a pursuance of these topics.

KEY WORDS AND PHRASES: axiomatic method, theory of programming'
proofs of programs, formal language definition, programming language
design, machine-independent programming, program documentation
CR CATEGORY: 4.0, 4.21,4.22, 5.20, 5.21,5.23, 5.24

1. Introduction
Computer programming is an exact science in tha t all

the properties of a program and all the consequences of
executing it in any given environment can, in principle,
be found out from the text of the program itself by means
of purely deductive reasoning. Deductive reasoning in-
volves the application of valid rules of inference to sets of
valid axioms. I t is therefore desirable and interesting to
elucidate the axioms and rules of inference which underlie
our reasoning about computer programs. The exact choice
of axioms will to some extent depend on the choice of
programming language. For illustrative purposes, this
paper is confined to a very simple language, which is effec-
tively a subset of all eurrent procedure-oriented languages.

2. Computer Arithmetic
The first requirement in valid reasoning about a pro-

gram is to know the properties of the elementary operations
which it invokes, for example, addition and multiplication
of integers. Unfortunately, in several respects computer
arithmetic is not the same as the arithmetic familiar to
mathematicians, and it is necessary to exercise some care
in selecting an appropriate set of axioms. For example, the
axioms displayed in Table I are rather a small selection
of axioms relevant to integers. From this incomplete set

* Depurtment of Computer Science

of axioms it is possible to deduce such simple theorems as:

x = x + y X O

y < r ~ r + y X q = (r - y) + y X (1 + q)

The proof of the second of these is:

A5 (r - - y) + y X (l + q)

= (r - - y) + (y X l + y X q)

A9 = (r - - y) + (y + y X q)

A3 = ((r - - y) + y) + y X q

A6 = r + y X q p rov idedy < r

The axioms A1 to A9 are, of course, true of the tradi-
tional infinite set of integers in mathematics. However,
they are also true of the finite sets of "integers" which are
manipulated by computers provided that they are con-
fined to nonnegative numbers. Their t ru th is independent
of the size of the set; furthermore, it is largely independent
of the choice of technique applied in the event of "over-
flow"; for example:

(1) Strict interpretation: the result of an overflowing
operation does not exist; when overflow occurs, the offend-
ing program never completes its operation. Note that in
this case, the equalities of A1 to A9 are strict, in the sense
that both sides exist or fail to exist together.

(2) Firm boundary: the result of an overflowing opera-
tion is taken as the maximum value represented.

(3) Modulo arithmetic: the result of an overflowing
operation is computed modulo the size of the set of integers
represented.

These three techniques are illustrated in Table I I by
addition and multiplication tables for a trivially small
model in which 0, 1, 2, and 3 are the only integers repre-
sented.

I t is interesting to note that the different systems satisfy-
ing axioms A1 to A9 may be rigorously distinguished from
each other by choosing a particular one of a set of mutually
exclusive supplementary axioms. For example, infinite
arithmetic satisfies the axiom:

A10z ~ 3 x V y (y < x),

where all finite arithmetics satisfy:

A10~ Vx (x < max)

where "max" denotes the largest integer represented.
Similarly, the three treatments of overflow may be

distinguished by a choice of one of the following aMoms
relating to the value of max + 1:

A l l s ~ 3 x (x = max + 1) (strict interpretation)

A l l , max + 1 = max (firm boundary)

AllM max + 1 = 0 (modulo arithmetic)

Having selected one of these axioms, it is possible to
use it in deducing the properties of programs; however,

576 Communications of the ACM Volume 12 / Number 10 / October, 1969

TABLE I

A1 x + y = y + x
A2 x X y = y X x

A3 (x + y) + z = x + (y + z)
A4 (xX y) X z = x X (yX z)

A5 x X (y + z) = x X y + x X z

A6 y < x D (x - - y) + y = x

A7 x + 0 = x
A8 x X 0 = 0
A9 x X l = x

addition is commutative
multiplication is commut-

ative
addition is associative
multiplication is associa-

tive
multiplication distrib-

utes through addition
addition cancels subtrac-

tion

TABLE II

1.
+ 0 1

0 0 1 2
1 1 2 3
2 2 3 *
3 3 * *
• nonexistent

StrictInterpretation
2 3 x 0 1 2

3 0 0 0 0
* 1 0 1 2
* 2 0 2 *
* 3 0 3 *

+
2. FirmBoundary

1 2 3 × 0 1 2 3

1 2 3 0 0 0 0 0
2 3 3 1 0 1 2 3
3 3 3 2 0 2 3 3
3 3 3 3 0 3 3 3

3.
+ 0 1 2

0 0 1 2
1 1 2 3
2 2 3 0
3 3 0 1

Modulo Arithmetic
3 X 0 1 2

3 0 0 0 0
0 1 0 1 2
1 2 0 2 0
2 3 0 3 2

these properties will not necessarily obtMn, unless the
program is executed on an implementation which satisfies
the chosen axiom.

3. P r o g r a m Execu t ion

As mentioned above, the purpose of this study is to
provide a logical basis for proofs of the properties of a
program. One of the most important properties of a pro-
gram is whether or not it carries out its intended function.
The intended function of a program, or part of a program,
can be specified by making general assertions about the
values which the relevant variables will take after execution
of the program. These assertions will usually not ascribe
particular values to each variable, but will rather specify
certain general properties of the values and the relation-
ships holding between them. We use the normal notations

of mathematical logic to express these assertions, and the
familiar rules of operator precedence have been used
wherever possible to improve legibility.

In many cases, the validity of the results of a program
(or part of a program) will depend on the values taken
by the variables before that program is initiated. These
initial preconditions of successful use can be specified by
the same type of general assertion as is used to describe
the results obtained on termination. To state the required
connection between a precondition (P), a program (Q)
and a description of the result of its execution (R), we
introduce a new notation:

P { Q } R .

This may be interpreted " I f the assertion P is true before
initiation of a program Q, then the assertion R will be
true on its completion." If there are no preconditions im-
posed, we write t r u e { Q } R)

The treatment given below is essentially due to Floyd
[8] but is applied to texts rather than flowcharts.

3.1. Axiom OF ASSIGNMENT
Assignment is undoubtedly the most characteristic fea-

ture of programming a digital computer, and one that
most clearly distinguishes it from other branches of mathe-
matics. I t is surprising therefore that the axiom governing
our reasoning about assignment is quite as simple as any
to be found in elementary logic.

Consider the assignment statement:

x : = f

where
x is an identifier for a simple variable;
f is an expression of a programming language without

side effects, but possibly containing x.
Now any assertion P (x) which is to be true of (the value

of) x after the assignment is made must also have been
true of (the value of) the expression f, taken before the
assignment is made, i.e. with the old value of x. Thus
if P (x) is to be true after the assignment, then P (f) must
be true before the assignment. This fact may be expressed
more formally:

DO Axiom of Assignment
 -P0 {x := f} P

where
x is a variable identifier;
f is an expression;
P0 is obtained from P by substituting f for all occur-

rences of x.
I t may be noticed that DO is not really an axiom at all,

but rather an axiom schema, describing an infinite set of
axioms which share a common pattern. This pattern is
described in purely syntactic terms, and it is easy to
cheek whether any finite text conforms to the pattern,
thereby qualifying as an axiom, which may validly appear
in any line of a proof.

1 If this can be proved in our formal system, we use the familiar
logical symbol for theoremhood: [-P {Q} R

Volume 12 / Number 10 / October, 1969 Communications of the ACM 577

3.2. RULES OF CONSEQUENCE
In addition to axioms, a deductive science requires at

least one rule of inference, which permits the deduction of
new theorems from one or more axioms or theorems al-
ready proved. A rule of inference takes the form " I f ~-X
and ~- Y then ~-Z", i.e. if assertions of the form X and Y
have been proved as theorems, then Z also is thereby
proved as a theorem. The simplest example of an inference
rule states tha t if the execution of a program Q en-
sures the t ru th of the assertion R, then it also ensures the
t ru th of every assertion logically implied by R. Also, if
P is known to be a precondition for a program Q to pro-
duce result R, then so is any other assertion which logically
implies P. These rules may be expressed more formally:

D1 Rules of Consequence
If ~-P{Q}R and ~-R D S then ~-P{Q}S
If ~-P{Q}R and ~-S ~ P then ~-S{Q}R

3.3. RULE OF COMPOSITION
A program generally consists of a sequence of statements

which are executed one after another. The statements may
be separated by a semicolon or equivalent symbol denoting
procedural composition: (Q1 ; Q2 ; " '" ; Q~). In order to
avoid the awkwardness of dots, it is possible to deal ini-
tially with only two statements (Q1 ; Q2), since longer se-
quences can be reconstructed by nesting, thus (Q~ ; (Q2 ;
(" " (Q,-1 ; Q.) - ' "))) . The removal of the brackets of
this nest may be regarded as convention based on the
associativity of the ";-operator", in the same way as brack-
ets are removed from an arithmetic expression (6 + (t2 +
(. . - (t,_~ + t ,) - - .))) .

The inference rule associated with composition states
tha t if the proven result of the first par t of a program is
identical with the precondition under which the second par t
of the program produces its intended result, then the whole
program will produce the intended result, provided that the
precondition of the first part is satisfied.

In more formal terms:
D2 Rule of Composition

If ~-P{QdR1 and ~-R~{Q2}R then ~-P{ (Q~ ; Q2)}R
3.4. RvL~ OF ITERATION
The essential feature of a stored program computer is

the ability to execute some portion of program (S) re-
peatedly until a condition (B) goes false. A simple way of
expressing such an iteration is to adapt the ALGOL 60
w h i l e notation:

w h i l e B d o S

In executing this statement, a computer first tests the con-
dition B. If this is false, S is omitted, and execution of the
loop is complete. Otherwise, S is executed and B is tested
again. This action is repeated until B is found to be false.
The reasoning which leads to a formulation of an inference
rule for iteration is as follows. Suppose P to be an assertion
which is always true on completion of S, provided tha t it is
also true on initiation. Then obviously P will still be true
after any number of iterations of the s tatement S (even

no iterations). Furthermore, it is known tha t the con-
trolling condition B is false when the iteration finally
terminates. A slightly more powerful formulation is pos-
sible in light of the fact tha t B may be assumed to be true
on initiation of S:

D3 Rule of Iteration
If ~P A B{S}P then ~-P{while B do S} ~ B A P

3.5. EXAMPLE
The axioms quoted above are sufficient to construct the

proof of properties of simple programs, for example, a
routine intended to find the quotient q and remainder r
obtained on dividing x by y. All variables are assumed to
range over a set of nonnegative integers conforming to the
axioms listed in Table I. For simplicity we use the trivial
but inefficient method of successive subtraction. The pro-
posed program is:
((r := x; q := 0); w h i l e

y < r d o (r : = r - - y ; q : = l + q))
An important property of this program is tha t when it
terminates, we can recover the numerator x by adding to
the remainder r the product of the divisor y and the quo-
t ient q (i.e. x = r + y X q). Furthermore, the remainder
is less than the divisor. These properties may be expressed
formally:

t r u e { Q } ~ y ~< r A x = r + y X q

where Q stands for the program displayed above. This
expresses a necessary (but not sufficient) condition for
the "correctness" of the program.

A formal proof of this theorem is given in Table III .
Like all formal proofs, it is excessively tedious, and it
would be fairly easy to introduce notational conventions
which would significantly shorten it. An even more power-
ful method of reducing the tedium of formal proofs is to
derive general rules for proof construction out of the simple
rules accepted as postulates. These general rules would be
shown to be valid by demonstrating how every theorem
proved with their assistance could equally well (if more
tediously) have been proved without. Once a powerful set
of supplementary rules has been developed, a "formal
proof" reduces to little more than an informal indication
of how a formal proof could be constructed.

4. G e n e r a l R e s e r v a t i o n s

The axioms and rules of inference quoted in this paper
have implicitly assumed the absence of side effects of the
evaluation of expressions and conditions. In proving prop-
erties of programs expressed in a language permitting side
effects, it would be necessary to prove their absence in
each ease before applying the appropriate proof technique.
I f the main purpose of a high level programming language
is to assist in the construction and verification of correct
programs, it is doubtful whether the use of functional
notation to call procedures with side effects is a genuine
advantage.

Another deficiency in the axioms and rules quoted above

578 Communica t ions of the ACM Volume 12 / Number 10 / October, 1969

is that they give no basis for a proof that a program suc-
cessfully terminates. Failure to terminate may be due to an
infinite loop; or it may be due to violation of an imple-
mentation-defined limit, for example, the range of numeric
operands, the size of storage, or an operating system time
limit. Thus the notation "PIQ}R" should be interpreted
"provided tha t the program successfully terminates, the
properties of its results are described by R." I t is fairly
easy to adapt the axioms so that they cannot be used to
predict the "results" of nonterminating programs; but the
actual use of the axioms would now depend on knowledge
of many implementation-dependent features, for example,
the size and speed of the computer, the range of numbers,
and the choice of overflow technique. Apart from proofs of
the avoidance of infinite loops, it is probably better to
prove the "conditional" correctness of a program and rely
on an implementation to give a warning if it has had to

TABLE III

Line
number Formal proof Justification

1 t r u e ~ x = x ~ y X 0 L e m m a l
2 x = x - { - y X O{r := x } x = r . - t - y X O DO
3 x = r ~ y X O { q : = O } x = r . - b y X q DO
4 t r u e {r := x} x = r ~ y X 0 D1 (1, 2)
5 t r u e {r := x; q := 0} x = r -t- y X q D2 (4, 3)
6 x = r ~ y X q A y ~ r ~ x =

(r - y) ~ y X (1-t-q) L e m m a 2
7 x = (r - - y) .-{- y X (1-t-q){r := r - y } x =

r + y X (l + q) DO
8 x = r + y X (l + q) [q := 1.-bq}x =

r - t - y X q DO
9 x = (r - - y) -~ y X (l + q) { r := r - - y ;

q := 1+q} x = r + y X q D2 (7, 8)
10 x = r + y X q A y ~ r {r := r - - y ;

, q : = l + q } x = r + y X q D1 (6, 9)
11 x = r -b y X q [w h i l e y ~ r d o

(r := r - - y ; q := 1--bq)}
~- -Ty < r /~ x = r ~ y X q D3 (10)

12 t r u e {((r := x; q := 0); w h i l e y ~ r d o
(r := r - - y ; q := l + q)) } -~y ~ r A x =
r + y X q D2 (5,11)

NOTES
i. The left hand column is used to number the lines, and the

right hand column to justify each line, by appealing to an axiom,
a lemma or a rule of inference applied to one or two previous
lines, indicated in brackets. Neither of these columns is part
of the formal proof. For example, line 2 is an instance of the
axiom of assignment (DO); line 12 is obtained from lines 5 and 11
by application of the rule of composition (D2).

2. Lemma 1 may be proved from axioms A7 and AS.
3. Lemma 2 follows directly from the theorem proved in See. 2.

abandon execution of the program as a result of violation
of an implementation limit.

Finally it is necessary to list some of the areas which have
not been covered: for example, real arithmetic, bit and
character manipulation, complex arithmetic, fractional
arithmetic, arrays, records, overlay definition, files, input /
output, declarations, subroutines, parameters, recursion,
and parallel execution. Even the characterization of integer
arithmetic is far from complete. There does not appear to
be any great difficulty in dealing with these points, pro-
vided that the programming language is kept simple.
Areas which do present real difficulty are labels and jumps,
pointers, and name parameters. Proofs of programs which
made use of these features are likely to be elaborate, and
it is not surprising that this should be reflected in the
complexity of the underlying axioms.

5. P r o o f s o f P r o g r a m C o r r e c t n e s s
The most important property of a program is whether it

accomplishes the intentions of its user. If these intentions
can be described rigorously by making assertions about the
values of variables at the end (or at intermediate points) of
the execution of the program, then the techniques described
in this paper may be used to prove the correctness of the
program, provided that the implementation of the pro-
gramming language conforms to the axioms and rules which
have been used in the proof. This fact itself might also be
established by deductive reasoning, using an axiom set
which describes the logical properties of the hardware
circuits. When the correctness of a program, its compiler,
and the hardware of the computer have all been established
with mathematical certainty, it will be possible to place
great reliance on the results of the program, and predict
their properties with a confidence limited only by the
reliability of the electronics.

The practice of supplying proofs for nontrivial programs
will not become widespread until considerably more power-
ful proof techniques become available, and even then will
not be easy. But the practical advantages of program prov-
ing will eventually outweigh the difficulties, in view of the
increasing costs of programming error. At present, the
method which a programmer uses to convince himself of
the correctness of his program is to t ry it out in particular
cases and to modify it if the results produced do not cor-
respond to his intentions. After he has found a reasonably
wide variety of example cases on which the program seems
to work, he believes that it will always work. The time
spent in this program testing is often more than half the
time spent on the entire programming project; and with a
realistic costing of machine time, two thirds (or more) of
the cost of the project is involved in removing errors during
this phase.

The cost of removing errors discovered after a program
has gone into use is often greater, particularly in the case
of items of computer manufacturer 's software for which a
large part of the expense is borne by the user. And finally,
the cost of error in certain types of program may be almost

V o l u m e 12 / N u m b e r 10 / O c t o b e r , 1969 C o m m u n i c a t i o n s o f t h e ACM 579

inealculable--a lost spacecraft, a collapsed building, a
crashed aeroplane, or a world war. Thus the practice of
program proving is not only a theoretical pursuit, followed
in the interests of academic respectability, but a serious
recommendation for the reduction of the costs associated
with programming error.

The practice of proving programs is likely to alleviate
some of the other problems which afflict the computing
world. For example, there is the problem of program docu-
mentation, which is essential, firstly, to inform a potential
user of a subroutine how to use it and what it accomplishes,
and secondly, to assist in further development when it
becomes necessary to update a program to meet changing
circumstances or to improve it in the light of increased
knowledge. The most rigorous method of formulating the
purpose of a subroutine, as well as the conditions of its
proper use, is to make assertions about the values of vari-
ables before and after its execution. The proof of the cor-
rectness of these assertions can then be used as a lemmain
the proof of any program which calls the subroutine. Thus,
in a large program, the structure of the whole can be clearly
mirrored in the structure of its proof. Furthermore, when
it becomes necessary to modify a program, it will always be
valid to replace any subroutine by another which satisfies
the same criterion of correctness. Finally, when examining
the detail of the algorithm, it seems probable tha t the proof
will be helpful in explaining not only what is happening
but why.

Another problem which can be solved, insofar as it is
soluble, by the practice of program proofs is tha t of trans-
ferring programs from one design of computer to another.
Even when written in a so-called machine-independent
programming language, many large programs inadvert-
ently take advantage of some machine-dependent prop-
erty of a particular implementation, and unpleasant and
expensive surprises can result when attempting to transfer
it to another machine. However, presence of a machine-
dependent feature will always be revealed in advance by
the fMlure of an a t tempt to prove the program from ma-
chine-independent axioms. The programmer will then have
the choice of formulating his algorithm in a machine-
independent fashion, possibly with the help of environment
enquiries; or if this involves too much effort or inefficiency,
he can deliberately construct a machine-dependent pro-
gram, and rely for his proof on some machine-dependent
axiom, for example, one of the versions of A11 (Section 2).
In the latter case, the axiom must be explicitly quoted as
one of the preconditions of successful use of the program.
The program can still, with complete confidence, be trans-
ferred to any other machine which happens to satisfy the
same machine-dependent axiom; but if it becomes neces-
sary to transfer it to an implementation which does not,
then all the places where changes are required[will be
clearly annotated by the fact that the proof at tha t point
appeals to the t ru th of the offending machine-dependent
axiom.

Thus the practice of proving programs would seem to

lead to solution of three of the most pressing problems in
software and programming, namely, reliability, documen-
tation, and compatibility. However, program proving, cer-
tainly at present, will be difficult even for programmers of
high caliber; and may be applicable only to quite simple
program designs. As in other areas, reliability can be pur-
chased only at the price of simplicity.

6. Formal Language Definition
A high level programming language, such as ALc~oL,

FORTRAN, or COBOL, is usually intended to be implemented
on a variety of computers of differing size, configuration,
and design. I t has been found a serious problem to define
these languages with sufficient rigour to ensure compat-
ibility among all implementors. Since the purpose of com-
patibility is to facilitate interchange of programs ex-
pressed in the language, one way to achieve this would be to
insist tha t all implementations of the language shall "sat-
isfy" the axioms and rules of inference which underlie
proofs of the properties of programs expressed in the
language, so tha t all predictions based on these proofs will
be fulfilled, except in the event of hardware failure. In
effect, this is equivalent to accepting the axioms and rules
of inference as the ultimately definitive specification of the
meaning of the language.

Apart from giving an immediate and possibly even
provable criterion for the correctness of an implementation,
the axiomatic technique for the definition of programming
language semantics appears to be like the formal syntax of
the ALaOL 60 report, in tha t it is sufficiently simple to be
understood both by the implementor and by the reasonably
sophisticated user of the language. I t is only by bridging
this widening communication gap in a single document
(perhaps even provably consistent) tha t the maximum
advantage can be obtained from a formal language def-
inition.

Another of the great advantages of using an axiomatic
approach is tha t axioms offer a simple and flexible tech-
nique for leaving certain aspects of a language undefined,
for example, range of integers, accuracy of floating point,
and choice of overflow technique. This is absolutely es-
sential for standardization purposes, since otherwise the
language will be impossible to implement efficiently on
differing hardware designs. Thus a programming language
standard should consist of a set of axioms of universal
applicability, together with a choice from a set of supple-
mentary axioms describing the range of choices facing an
implementor. An example of the use of axioms for this
purpose was given in Section 2.

Another of the objectives of formal language definition
is to assist in the design of bet ter programming languages.
The regularity, clarity, and ease of implementation of the
ALGOL 60 syntax may at least in part be due to the use of
an elegant formal technique for its definition. The use of
axioms may lead to similar advantages in the area of
"semantics," since it seems likely that a language which can

(Continued on p. 583)

580 Communications of the ACM Volume 12 / Number 10 / October, 1969

by Lowe. In addition, we define F(j) = ~ = ~ f(i) and
write Ix] for the greatest integer not exceeding x.

In a packed list file, the bucket which contains the first
element of list j will have its first

F(j) -- C[F(j)/C] (1)

positions occupied by lists j - 1, j - 2, For any
practical file, when j is not a small integer, (1) behaves as
a random variable uniformly distributed between 0 and C.
In other words, the start of a list is independent of bucket
boundaries. I t is easy to see that the expected number of
accesses required to retrieve list j is f (j) / C ~ 1.

Hence we have

T, = t~ (f (j) / C + 1) p (j) ,

(2)
.'. T, / t , -- 1 + ~ f (j) p (j) / C ,

since ~ f = l p(j) = 1. Equation (2) corresponds to (11)
in [1].

The assumptions on f (j) and p(j) in [1] may be sub-
stituted into (2). The first two assumptions yield

Tr/t, = 1 + S /NC, (3)

and the third assumption, for large N, yields approximately

T~/t~ = 1 + (lnN + ~)-2~-V6. (4)

These equations should be compared with the right-hand
inequalities of (13) and (24) in [1].

RECEIVED MARCH 1969; REVISED JUNE 1969

REFERENCES

1. LOWE, THOMAS C. The influence of data-base characteristics
and usage on direct-access file organization. J . A C M 15,
4 (Oct. 1968), 535-548.

A

C. A. R. HOARE--cont'd from page 580

be described by a few "self-evident" axioms from which
proofs will be relatively easy to construct will be preferable
to a language with many obscure axioms which are dif-
ficult to apply in proofs. Furthermore, axioms enable the
language designer to express his general intentions quite
simply and directly, without the mass of detail which
usually accompanies algorithmic descriptions. Finally, ax-
ioms can be formulated in a manner largely independent
of each other, so that the designer can work freely on one
axiom or group of axioms without fear of unexpected in-
teraction effects with other parts of the language.

Acknowledgments. Many axiomatic treatments of com-
puter programming [1, 2, 3] tackle the problem of proving
the equivalence, rather than the correctness, of algorithms.
Other approaches [4, 5] take recursive functions rather
than programs as a starting point for the theory. The
suggestion to use axioms for defining the primitive opera-
tions of a computer appears in [6, 7]. The importance of
program proofs is clearly emphasized in [9], and an in-
formal technique for providing them is described. The
suggestion that the specification of proof techniques pro-
vides an adequate formal definition of a programming
language first appears in [8]. The formal treatment of pro-
gram execution presented in this paper is clearly derived
from Floyd. The main contributions of the author appear
to be: (1) a suggestion that axioms may provide a simple
solution to the problem of leaving certain aspects of a

language undefined; (2) a comprehensive evaluation of
the possible benefits to be gained by adopting this approach
both for program proving and for formal language defini-
tion.

However, the formal material presented here has only
an expository status and represents only a minute propor-
tion of what remains to be done. I t is hoped that many of
the fascinating problems involved will be taken up by
others.

RECEIVED NOVEMBER, 1968; REVISED MAY, 1969

REFERENCES

i. YANOV, Yu I. Logical operator schemes. Kybernetika I, (1958).
2. IGARASHI, S. An axiomatic approach to equivalence problems

of algorithms with applications. Ph.D. Thesis 1964. Rep.
Compt. Centre, U. Tokyo, 1968, pp. i-I01.

3. DE BAKICER, J. W. Axiomatics of simple assignment statements.
M.R. 94, Mathematisch Centrum, Amsterdam, June 1968.

4. McCARTHY, J. Towards a mathematical theory of computation.
Proc. IFIP Cong. 1962, North Holland Pub. Co., Amsterdam,
1963.

5. BURSTALL, R. Proving properties of programs by structural in-
duction. Experimental Programming Reports: No. 17 DMIP,
Edinburgh, Feb. 1968.

6. VAN WIJNGAARDEN, A. Numerical analysis as an independent
science. B I T 6 (1966), 66-81.

7. LASKI, J. Sets and other types. ALGOL Bull. 27, 1968.
8. FLOYD, R. W. Assigning meanings to programs. Proc. Amer.

Math. Soc. Symposia in Applied Mathematics, Vol. 19, pp.
19-31.

9. N~_uR, P. Proof of algorithms by general snapshots. B I T 6
(1966), 310-316.

Volume 12 / Number 10 / October, 1969 Communica t ions of the ACM 583

